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Abstract. We study singular boundary value problems with mixed boundary conditions
of the form

(p(t)u') + p(t) £ (t, u, p(t)u) = 0, tggl+p(t)U'(t) =0, w(T)=0,

where [0,7] C R. We assume that 2 C R?, f satisfies the Carathéodory conditions on
(0,T) x 2, p € C[0,T] and 1/p need not be integrable on [0,7]. Here f can have time
singularities at ¢ = 0 and/or t = T and a space singularity at + = 0. Moreover, f can
change its sign. Provided f is nonnegative it can have even a space singularity at y = 0.
We present conditions for the existence of solutions positive on [0, 7).

Keywords: singular mixed boundary value problem, positive solution, lower function,
upper function, convergence of approximate regular problems
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1. INTRODUCTION

Assume that [0,7] C R, 2 C R? and that f satisfies the Carathéodory conditions
on (0,7) x 2. We investigate the solvability of the singular mixed boundary value

problem
(1.1) (p(t)) + p(t) f (¢, u, p(t)u’) = O,
(1.2) Jim p(t)e(t) =0, u(T) =0,
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where p € C[0,T] and f can have time singularities at ¢t = 0 and/or t = T and
a space singularity at * = 0. In particular, f can have even a space singularity at
y = 0if f is nonnegative (Theorem 2.1). In [19] we have studied a special case of the
above problem with p(t) =1 on [0, 7] and in [20] we have proved solvability of (1.1),
(1.2) provided 1/p € L[0,T]. Here we investigate problem (1.1), (1.2) under the
assumption that 1/p need not be integrable on [0, T]. This assumption is motivated
by a problem arising in the theory of shallow membrane caps (see [10], [13]), which
is controlled by the equation

(t3u') + i — aoﬁ — bt =0, ag>=0, bp>0, v>1,
8u? u
with p(t) = t3. We see that this is the case 1/p ¢ L1[0,T]. But in our paper, in
contrast to the above example, we will investigate equations where the right-hand
side f depends both on u and on v’

Note that the importance of singular mixed problems consists also in the fact that
they arise when searching for positive, radially symmetric solutions to nonlinear
elliptic partial differential equations (see [9], [12]).

In this paper we prove existence of solutions of (1.1), (1.2) which are positive on
[0,T). For other existence results of singular mixed problems we refer to [1]-[8], [11],
[14]-[22].

Here we extend results of [2], [19], [20] and offer new conditions which guarantee
the existence of positive solutions of the singular problem (1.1), (1.2) provided both
time and space singularities are allowed. Moreover, we also admit f to change its
sign (Theorem 2.2).

First, we recall some definitions and results. Let [a,b] C R, .# C R?. We say that
a real valued function f satisfies the Carathéodory conditions on the set [a,b] x A if

(i) f(,z,y): [a,b] — R is measurable for all (z,y) € A4,
(ii) f(¢,-,-): 4 — R is continuous for a.e.t € [a,b],
(iii) for each compact set K C .# there is a function mg € L1[0,T] such that
|f(t,z,y)| < mi(t) for a.e.t € [a,b] and all (z,y) € K.

We write f € Car([a,b] x .#). By f € Car((0,T) x 2) we mean f € Car([a,b] x 2)

for each [a,b] C (0,T) and f ¢ Car([0,T] x 2).

Definition 1.1. Let f € Car((0,T) x 2). We say that f has a time singularity
at t =0 and/or at ¢ = T if there exists (x,y) € 2 such that

€ T
/ |f(t,z,y)|dt = 00 and/or / |f (¢, z,y)| dt = 00
0 T—¢
for each sufficiently small & > 0. The point ¢ = 0 and/or t = T will be called a singular
point of f. Let 2 = (0,00) x I, I C R. We say that f has a space singularity at
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z=0if

limsup |f(¢,z,y)] = oo for a.e. t € [0,T] and for some y € I.
x—0+

Let 2 = (0,00) x (—00,0). We say that f has a space singularity at y = 0 if

limsup |f(t,z,y)| = oo for a.e. ¢t € [0,T] and for some z € (0, 00).

y—0—

Definition 1.2. By a solution of problem (1.1), (1.2) we understand a function
u € C[0,T] with pu’ € AC[0,T] satisfying conditions (1.2) and fulfilling

(1.3) (p(t)u' (t)) + p(t) f(t,u(t),p(t)u’(t)) =0 for a.e. t € [0,T].
Now consider an auxiliar regular problem
(1.4) (qt)u") + h(t,u,q(t)u’) =0, u'(0)=0, w(T) =0,

where ¢ € C[0,T)] is positive on [0,T] and h € Car([0,T] x R?).

Definition 1.3. A solution of the regular problem (1.4) is defined as a func-
tion u € C0,T] with qu’ € AC|0,T] sastisfying «/(0) = u(T) = 0 and fulfilling
() (t)) + h(t,u(t),q(t)u'(t)) = 0 for a.e.t € [0,T].

In the proofs of our main results we will use the following lower and upper functions
method for problem (1.4).

Definition 1.4. A function o € C[0,T] is called a lower function of (1.4) if
there exists a finite set ¥ C (0,7) such that qo’ € AC1,c([0,T]\X), o/ (7+),0'(7—) €
R for each 7 € X,

(1.5) ()’ () + h(t,o(t),q(t)o’(t)) >0 for a.e.t e [0,T]
and
(1.6) a'(0)=>0, o(T)<0, o'(r—)<o'(r+) foreachTeX.

If the inequalities in (1.5) and (1.6) are reversed, then o is called an upper function

of (1.4).
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Lemma 1.5 ([20], Theorem 2.3). Let o1 and o3 be a lower function and an upper
function for problem (1.4) such that o1 < 02 on [0,T]. Assume also that there is a
function ¢ € L1[0,T) such that

(1.7) |h(t,z,y)| < Y(t) forae t€l0,T], all z € [o1(t),02(t)], y € R.
Then problem (1.4) has a solution u € C1[0,T] satisfying qu’ € AC[0,T] and

(1.8) o1(t) <ult) < oolt) fort €0, 7).

2. MAIN RESULTS

The first existence result for the singular problem (1.1), (1.2) will be proved under
the assumptions

(2.1) p € C[0,T], p>0on (0,7], 1/p need not belong to L[0,T],

and
2 = (0,00) x (—0,0), f € Car((0,T) x 2),
(2.2) f can have time singularities at t =0, t =T,
f can have space singularities at z =0, y = 0.
Theorem 2.1. Let (2.1), (2.2) hold. Assume that there existe € (0,1), v € (0,T),

¢ € (v,00) and positive functions ¢ € L1, (0,T), w € C(0,00), h € C[0,00) such
that

1t

@3) o [ pe)ets)ds € L, 0.T)

(2.4) f(t, P(t),—c)=0 fora.e.te(0,T),

(2.5 e< f(t,x,y) forae te(0,v], allz € (0,P(t)], y € [-v,0),
and

(2.6) 0< f(t z,y) < @) (w() + h(z))
for a.e. t € (0,T), all x € (0, P(t)], y € [—¢,0),

(2.7) P(t) = c/tT pc(l—:: for t € (0,71,



w is nonincreasing, h is nondecreasing and

(2.8) lim hiz) < 00

r—o0 I

Then problem (1.1), (1.2) has a solution u € C0, T positive and decreasing on [0,T')
with pu’ € AC[0,T).

Note. Condition ¢ € Lq,.(0,T) or ¢ € Ly, [0,T) means that ¢ € Li]a,b] for
each [a,b] C (0,T) or [a,b] C [0,T), respectively. Functions satisfying (2.3) are for
example p(t) = t* and p(t) =t + (T — )73, where a > 1,8 € (0, 2).

Proof. Letk €N, k> 3/T. In the following Steps 1-5 we argue as in the proof
of Theorem 3.1 in [20]. So we will show just an abridgement of these steps.

Step 1. Approximate solutions. Fort € [0,T], z,y € R put

P@) ifz>P(1),
(2.9) ap(t,z) =< x if 1/k <z < P(t),
1/k  ifz<1/k,

and
-1/k ify>-1/k,
Br(y) = v if —ce<y<-1/k,
—c ify < —c,
and
€ ify > —v,
(2.10) Y(y) =< elc+y)lc—v)™t if —e<y<—v,
0 ify<<—c.

For a.e.t € [0,7T] and all z,y € R define

v(y) ift €[0,1/k),
fk(t;-T,y) = f(t,ak(t,z),,é’k(y)) ifte [1/k’T71/k]7
0 ifte (T —1/k,T)
and
max{p(t),p(1/k)} ifte€[0,1/k),
(2.11) Pi(t) = {p(t) if ¢ € [1/k, T].

Then pi € C[0,T], pr. > 0 on [0,T], and there is ¥y, € L1[0,T] such that
(2.12) |p (t) fr(t, x,y)| < Yi(t) forae.te[0,T] and all z,y € R.
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We have got a sequence of auxiliary regular problems
(2.13) (Pe()u") + pr(t) fr(t u, pe(t)u’) =0, 4/(0) =0, u(T) =0,

keN, k> 3/T. If we put

T
a1(t) =0, ox(t) = c/ for t € [0,T7,
t

Pr(s)
then o1 and o9y, are lower and upper functions of (2.13) and, by Lemma 1.5, problem
(2.13) has a solution uy € C[0, T satisfying

(2.14) 0 < up(t) < oun(t) for t € [0, 7).

Step 2. A priori estimates of approximate solutions ug. Con-
ditions (2.14) and ux(T) = o2x(T) = 0, pr(0)u},(0) = 0 and the monotonicity of piu),
give

(2.15) —c < pp(t)up(t) <0 on [0,7].

Choose an arbitrary compact interval J C (0,T). By virtue of (2.5) and (2.15) there
is k; € N such that for each kK € N, k > k;

ks <up(t) <ky, —k;<ul(t)<—1/ky,
(2.16) {/1 k(? J 7 S u(t) [k
k

—c < pr(t)ul,(t) < —=1/ky; forte J,

and hence there is 1) € L1 (J) such that

(2.17) [Pk (8) fi (8, u (), pi (Hug ()| < ¥(t)  a.e.on J.

Step 3. Convergence of a sequence of approximate solu-
tions. Using conditions (2.16), (2.17) we see that the sequences {u} and {piu} }
are equibounded and equicontinuous on J. Therefore by the Arzela-Ascoli theorem
and the diagonalization principle we can choose u € C(0,7) and subsequences of
{ux} and of {pru}} which we denote for simplicity in the same way such that

(2.18) lim wug = u, klim pruy, = pu’  locally uniformly on (0,7),

k—o0

(2.19) 0<u(t)<PE), —c<p)u(t)<0 forte (0,T).

Step 4. Convergence of a sequence of approximate prob-
lems.
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Choose an arbitrary £ € (0,T) such that
f(&,-,+) 1is continuous on (0,00) X (—o0,0).

There exists a compact interval J: C (0,7 with { € J¢ and, by (2.16), we can find
ke € N such that for each k > k¢

1

- T-— 2.
ke

R

wl®) > = mEun© <-4 Jec|
3

Therefore

(2.20) Jim i () fi (8 wn(8), pr(D)u (6)) = P F (£ u(t), p(O)u' (1))
| for a.e. t € (0,7).

Integrating (2.13), letting ¥ — oo and using the Lebesgue convergence theorem we
get for an arbitrary ¢ € (0,7)

ey (D) (%) s = [ pnsuteptnear

5T

i.e. (1.3) is valid.
Step 5. Properties of pu'. According to (2.13) and (2.15) we have for each
k>3/T

T
/0 Pr(5) fr (s, uk(s), pr(s)uy(s)) ds = —pr(T)uy,(T) € (0,¢],

which together with (2.6), (2.19) and (2.20) yields, by the Fatou lemma, that
p(t) f(t,u(t), p(t)u’(t)) € L1[0,T]. Therefore, by (2.21), pu’ € AC[0,T].

Step 6. Properties of u. Since pu’ is continuous on [0,7] and 1/p is con-
tinuous on (0, T, we get u € C(0,T]. It remains to prove that u € C[0,T]. By (2.19)
u is decreasing on (0,7'), which yields

0< A= lim u(t).
t—0+

Therefore it is sufficient to prove that A < oo.
By (1.3), (2.6) and (2.19) we deduce that

(2.22) —(p(t)u' (1)) < p(t)e(t)(w(u(t)) + h(u(t)) for a.e. t € (0,T).
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Let By € (0,00) and z¢ € (0, A) be such that
w(zo) = h(zo) + Bo € (0,00).
Then there is tg € (0,T") such that
u(to) = xo, x0 < u(t) < Aforte (0,t0),
and having in mind monotonicity of w and h we obtain
(2.23) —(p(t)u' (1)) < p(t)p(t)(2h(A) + By) for a.e. t € (0, o],
where h(A) = Ilgrjlq h(z). By virtue of (2.8) we can find a € (0, 00) such that
lim M
z—00 I

and due to (2.3) there is t, € (0,ty) satisfying

ta 1 /S 1
— p(T)p(T)drds < —.
L 7y Hoearas<
Integrating (2.23) we get

<a

() < (2h(A) + Bo)]%s) / “p(r)e(r)dr, s € (0.t

and integrating the last inequality we obtain

1

u(t) — u(ty) < (2h(A) + BO)/t ’ @ /OS p()e(r)drds, te€(0,t,).

Hence, for t — 0+ we get

2h(A) + By

A < ulty) + (2h(A) + Bo)/o ’ 1%5) /0S p(T)e(T)drds < u(ty) + 3a

and

u(ty)  2h(A)+ By
1T ) = F(A).
Since lim F(x) < 2/3, there exists A* € (0, 00) such that F(z) < 1 for each z > A*.

xr—00

Since F'(A) > 1, we have A < A*. O

1<

The second existence result is applicable to sign-changing nonlinearities. Now we
will assume (2.1) and

2 = (0,00) x R, f e Car((0,T) x 2),
(2.24) f can have time singularities at t =0, t =T,

f can have a space singularity at = = 0.
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Theorem 2.2. Let (2.1) and (2.24) hold. Assume that there exist r,e,p,v €
(0,00), ¢ € (v,0) and positive functions ¢ € Ly, (0,T), ¢ € L1[0,T], w € C(0, 00),
h € C[0,00) such that

1t
(2.25) M/o p(s)(s)ds € L1]0,T],
2.26) f(t, P(t),—c) <0 fora.e. te(0,7T),
2.27) e< f(t,x,y) forae te€(0,T), allz € (0,v],y € [-v,v],
and
(2.28) —¥(t) < f(t2,y) < o(t)(w(@) + h(@)(yl +1) +ry?,

' for a.e. t € (0,T), all z € (0, P(t)], y € R,

hold, where w is nonincreasing, h is nondecreasing, ¢ and h satisfy (2.3) and (2.8),
respectively, and P is given by (2.7). Then problem (1.1), (1.2) has a positive solution
u € C[0,T] with pu’ € AC0,T].

Proof. LetkeN, k>3/T.

Step 1. Approximate solutions. Fort € [0,T], z,y € R define ay, ~

and py by (2.9), (2.10) and (2.11), respectively. Consider a sequence {p;} C (1,00)
satisfying klim or = 00, and put for a.e.t € [0,7] and all z,y € R

if < )
@c(y):{y .|y| .Qk
ok signy if |y| > o,
fult ) = {v(y) if t € 0,1/k) U (T —1/k, T],
o [t ar(t ), Be(y)) if t € [1/k,T — 1/k].

In such a way we have got a sequence of regular problems (2.13) fulfilling (2.12) and
consequently a sequence of their solutions {uy} satisfying (2.14).

Step 2. A priori estimates of approximate solutions ug. With-
out loss of generality we can assume that € > 0 is so small that

(2.29) 6/0 p(s)ds < v.

(I) Assume that uy(0) > v. Since ug(T) = 0 there exist so € [0,T), 70 € (S0, 7] such
that

(2.30) up(t) = v fort € [0, so]
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and
ug(so) =v, wug(t) <wvfort € (so,70]

Then uj(so) < 0 and we will consider two cases: —v < pi(so)uj(so) < 0 and
Pr(s0)up(s0) < —v.
Case A. Let —v < pi(so)uy(so) < 0. Then there exists tg € (so,T] such that for
t € [so0, 0]
0<uk(t) <v, o [pe(tug(t)] < v

By (2.27) we get

pr(t(t) < — / p(s) ds + pi(s0)uu(s0) < —¢ / p(s)ds, t € (so. to),

S0 S0

i.e.for t € [sg, o)

t
(2.31) pr(t)uy(t) < —5/ p(s)ds.

S0
Therefore uy(t) < v, u)(t) < 0 and pg(t)u)(t) = —v on (s, to]. Assume that to < T
Then there exists t1 € (to, 1] such that pg(t)u)(t) < —v for ¢ € (¢, t1], which yields
ug(t) < v and (2.31) on [tg,t1]. Assume that t; < T. Then there exists to € (t1,7]
such that

¢
—v < 75/ p(s)ds < p(t)uy(t) <0 for t € (t1,1a].

s0
This implies that ug < v on (t1,t2] and, by (2.27),
t t
pr(t)uy(t) < —5/ p(s)ds + pr(t1)uy(t1) < —5/ p(s)ds for t € (t1,12],

t1 S0

a contradiction. So, we have proved t; = T and hence, by (2.29),
(2.32) (2.31) and wuk(t) <v hold on (sg,T].

Case B. Let pi(so)uy(so) < —v. Then there exists s; € (sp,T] such that 0 <
ug(t) < v for t € (sp,s1] and, by (2.29),

¢
pr(t)us(t) < —6/ p(s)ds, t € (so,s1].
S0
Assume that s; < T. Then there exists so € (s1, 7] such that
¢
v < *6/ p(s)ds < pr(t)up(t) <0 for t € (s1, s2).
S0
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This implies that uy < v on (s1, $2] and, by (2.27),

t

pr(t)uy(t) < 75/ p(s)ds + pr(s1)uy(s1) < 75/ p(s)ds for t € (s1, s2],

S1 S0

a contradiction. So, we have proved s; = T, which yields (2.32). Denote
(2.33) M =max{p(t): t €[0,T]}.

Then, using (2.30) and integrating (2.31), we obtain

(2.34) w(t) > v for t € [0, o],
. k = s
eM~1! j;T [, p(7)drds for t € [so, T].

(IT) Assume that ux(0) € [0, ). Since pr(0)u},(0) = 0, we can argue as in (I) Case A
with sg = 0 and derive

(2.35) pr(t)uy(t) < —¢ /Otp(s) ds forte[0,T).

Integrating this inequality and using (2.33), we have

T rs
(2.36) u(t) = eM ™t // p(t)drds fort € [0,T].
t Jo
Choose an arbitrary interval
J =[a,b] C (0,T).

According to (2.7), (2.14), (2.34) and (2.36) there exists ko € N such that for each
k> ko

(2.37) JC[1/k,T—1/k] and ¢, <ui(t) < Pla) for teJ,

T rs
h :min{u, EM_l/ / p(T) des}.
b Jb

Step 3. A priori estimates of |pyui| on J. By virtue of (2.37) there
exists & € (a,b) such that

where

_ uk(b) — uk(a)

(&) u (Er) b a

(&)
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and, using (2.33) and (2.37), we have

MP(a)

(2.38) |pr () u (Ek)] < T

=mj.

Let max{|px(t)u},(t)]: t € [a,b]} = |pe(nx)u), (k)] = Ri > my. Then we can find
Ck € [a,b] such that

1Pk (Cr)ur(Gr)| = my and  |pr(t)u(t)] = m.  for t € [min{Ck, ne}, max{Ce, mi}]-

Assume that pg(nr)ul,(nx) = Ry and ¢, > ng. By (2.9), (2.11), (2.28), (2.33), (2.37),
Nk / /
[y, ,
Ck

b
pr(t)ul(t) + 1 (w(cp) + h(P(a))) / () dt + rM P(a)

and consequently

Ry d
(2.39) / < My

Assume that pi(ne)u),(nk) = — Rk and (x < nx. Similarly as above we get
Nk )W N n

T —(pr(t)uy () dt
/ck ENOTADES M

which gives (2.39). Since there exists ¢; > 0 such that [’ (s +1)"'ds > M, we

get R < 0J. prk(nk)u;c(nk> = Ry and Ck < 1N or pk(nk)%(ﬁk) = —R; and Ck > Nk,
we get by (2.28)

b
Ry <my + / p(Ey(t) dt.

We can choose

b
0 >my+ / p(O)(t) dt
and then we have
(2.40) etk ()] < 07, |uh(t)] < i—j for t € J,

where ¢; = min{p(t): t € J}.

Step 4. Convergence of sequences of approximate solu-
tions and problems. Having in mind (2.37) and (2.40) we get (2.17) and
hence condition (2.18) and the inequality

(2.41) 0<u(t) < P(t) forte(0,T)
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are valid. Further we can follow Step 4 of the proof of Theorem 2.1 to obtain (2.20)
and (2.21).

Step 5. Properties of pu'. By (2.32) and (2.35) we have py(T)u},(T) < 0.
The conditions (2.14) and ux(T) = 091 (T) = 0 give

uk(T) — uk(t)
Tt

02k (T) — 02k (t)

> pi(t) T 1

pr(t) for t € (0,T),

which yields
(2.42) —c < pp(T)up(T) < 0.

According to (2.13) and (2.42) we have for each k > 3/T

T
[ 91l 0n(5), e (91 (5)) ds = (DT € (0.6
0
This together with (2.28), (2.41), (2.20) yields, by the Fatou lemma, that

p(t)f(t,u(t), p(t)u'(t)) € L1[0, T].

Therefore, by (2.21), pu’ € AC[0,T).

Step 6. Properties of u. We will prove that v € C[0,T]. Since pu’ is
continuous on [0,7] and 1/p is continuous on (0,7, we get u € C(0,T]. It remains
to prove that u is right continuous at t = 0. Denote

(2.43) limsup u(t) = A.
t—0+

(i) Assume A < v. By (2.41) and (1.2) there is a dg > 0 such that
u(t) € (0,v), |p(t)u'(t)| <v fort € (0,d),
and so, due to (2.27), u is strictly decreasing on (0,dy). Hence

li =A
ti%l+u(t) € (0,v),
which yields u € C[0, T].

(if) Assume A > v. Then there exist tg € [0,T) and ¢1 € (to, T such that u(to+) =
vand u(t) <v fort € (tg,t1]. If to = 0, we get uw € C[0,T] as in (i). Now, assume
that typ > 0. Then we argue as in Step 2 and deduce ¢t; = 7. Hence, according
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to (1.2), we can find t* € (0,7") such that v < u(t) for t € (0,t*). By (2.8) we can
find a € (0, 00) such that
lim M
r—o0 I

Further, by (2.3), (2.43) and (1.2), there is * € (0,t*) such that

<a

5*

1 /8 1
(2.44) ; E/o p(T)e(rT)drds < m,
) <A+1, |p' ) <v forte (0,5%).

S

Moreover, (2.27) and (2.28) yield € < ¢(¢)[w(v) + h(v)] for a.e.t € (0,T). Thus for
t€0,T]

0< m/otﬁ/:p(ﬂdrds</Ot$/osp(7)w(7)dfds7

and so, due to (2.3),

6 1 s .
(2.45) /0 ZTS)/O p(r)drds = ¢* € (0, 00).

Integrating (2.28) and using (2.44) we get for ¢t € (0,5*)

—p()u(t) < (w(v) + h(A+1))(v + 1)/0 p(T)e(r) dT + 7"1/2/0 p(r)dr

and integrating this inequality once more and using (2.44) and (2.45) we have for
t € (0,0%)
1
u(t) < u(d*) + (w(v) + h(A+1)) o +rvct,
a

According to (2.43) we can choose a sequence {t,} C (0,d*), t, — 0, and u(t,) — A.
Therefore 1
A< u(d™) + (w(v) + h(A+1)) 2 T rvict

a
and 1 ) (A+1)h(A +1)
w(v + +
1 < - 6* “\") 2 ok vt
A[“( J+ g e } RGPV Ty
Since lim F(x) < 1/2, there exists A* € (0, 00) such that F(z) < 1 for each 2 > A*.
Since F(A) > 1, we get A < A*, which means that u is bounded on [0, T]. Due to
(2.44) and (2.28)

= F(A).

—p(t)p(t) < —(p(t)u' (1)) < p(t)[(t)(w(V) + h(A+ 1) (v +1) + 0]
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holds for a.e.t € (0,6*). If we put K1 = (w(v) + h(A +1))(v + 1), K = rv? and
integrate the above inequalities, we get on (0,0%)

i) / p(r)p(r) dr < — () < K

p(t

1 /t 1 t
— | p(n)p(r)dr + Koa— / p(T)dr.
p(t) Jo p(t) Jo

Due to (2.3), (2.25) and (2.45) there exists hg € L1]0,6*] such that |u'(t)] < ho(t)
for a.e.t € (0,9*). Therefore u € C[0,0*], which completes the proof. O

3. EXAMPLES

In Theorems 2.1 and 2.2 we assume that w € C(0, 00) is positive and nonincreasing
but no additional assumption about the behaviour of w near the singularity x = 0 is
required. Therefore w(z) can go to +o0o for & — 0+ very quickly, which means that
f(t,x,y) can have at z = 0 a strong singularity.

Example 3.1. Let o, 7,0 € (0,00), ¢1,¢2 € [0,00), B € [0,1], 0 < § < min{2,
6 4+ 1}. By Theorem 2.1 the problem

(3.1) (%) + 1970 (cru™* 4 cou +1)(1 — (t%]/])7) = 0,
N N _
(3.2) t£%1+t u(t)=0, u(l)=0

has a positive decreasing solution.
To see this we put p(t) = t¥, p(t) = t7°, v = 1/2, ¢ = 1 - (1/2)7, ¢ = 1,
w(m) =crx™*+1, h(z) = coz® + 1 and f(t,2,y) =t (c1a™ + co2® + 1)(1 — |y|").

Remark 3.2. Note that:

1. Since « can be chosen in (0, 00), equation (3.1) can have both a weak singularity
at © = 0 (if we choose a € (0,1)) and a strong singularity at = 0 (if we choose
a > 1). Hence we generalize the results of [2] where only weak singularities are
admitted. See Examples 2.2 and 2.3 in [2].

2. 0 € (0,00) implies that we can choose § > 1 and get 1/p & L]0, 1].

3. Similarly, 0 < § < min{2,0 + 1} implies that if # > 1 we can choose § € [1,2)
and get ¢ & L1[0,1].

4. Since 8 € [0, 1], the function f can have for £ — oo either a sublinear growth
(if B € (0,1)) or a linear growth (if 3 = 1) or f can be bounded for large z (if 5 = 0).

5. v € (0,00) yields that f can have a similar behaviour for large y as for large
x but, moreover, f can have also a superlinear growth for |y| — oo (if we choose
v >1).

407



Example 3.3. Let a € [0,00), 6 € [0,1], 7,0 € [1,00), § € [1,2). Denote

qit) =t + (1 —t)77, q1(t) = 1//t +1/4/T —t and consider the equation

%) + %) [(w™ + uP + 1)|1+ %/ + 4(1 + t%4)?)
—t%q1(t)(sin®(u + 1) + 1) = 0.

By Theorem 2.2 the problem (3.3), (3.2) has a positive solution.

To see this we put p(t) = t?, p(t) = q(t) + 2q1(t), ¥(t) = 2q1(t), r = 4, ¢ = 1,

v=1/3,c=1,wx) =2"*+1, h(z) = 27 + 1 and f(t,z,y) = qO)[(z7 + 2° +
DI +yl+4(1 +9)% — qu(t)(sin®(z + 1) + 1).

Remark 3.4. In Example 3.1 the function f is nonnegative on the set where

we have found solutions, i.e.for ¢t € (0,1], z € (0,00), y € [~1,0). Let us show that

in

Example 3.3 the function f changes its sign. We can see that f(¢,z,—1) < 0 for

t € (0,1), z € (0,00). On the other hand, for ¢ € (0,1), z € (0,1/3], y € [-1/3,1/3]
we have f(t,z,y) > 1.
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