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Abstract. We study singular boundary value problems with mixed boundary conditions
of the form

(p(t)u′)′ + p(t)f(t, u, p(t)u′) = 0, lim
t→0+

p(t)u′(t) = 0, u(T ) = 0,

where [0, T ] ⊂
�
. We assume that D ⊂

� 2 , f satisfies the Carathéodory conditions on
(0, T ) × D , p ∈ C[0, T ] and 1/p need not be integrable on [0, T ]. Here f can have time
singularities at t = 0 and/or t = T and a space singularity at x = 0. Moreover, f can
change its sign. Provided f is nonnegative it can have even a space singularity at y = 0.
We present conditions for the existence of solutions positive on [0, T ).

Keywords: singular mixed boundary value problem, positive solution, lower function,
upper function, convergence of approximate regular problems
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1. Introduction

Assume that [0, T ] ⊂ � , D ⊂ � 2 and that f satisfies the Carathéodory conditions
on (0, T ) × D . We investigate the solvability of the singular mixed boundary value

problem

(p(t)u′)′ + p(t)f(t, u, p(t)u′) = 0,(1.1)

lim
t→0+

p(t)u′(t) = 0, u(T ) = 0,(1.2)
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where p ∈ C[0, T ] and f can have time singularities at t = 0 and/or t = T and

a space singularity at x = 0. In particular, f can have even a space singularity at

y = 0 if f is nonnegative (Theorem 2.1). In [19] we have studied a special case of the

above problem with p(t) = 1 on [0, T ] and in [20] we have proved solvability of (1.1),

(1.2) provided 1/p ∈ L1[0, T ]. Here we investigate problem (1.1), (1.2) under the

assumption that 1/p need not be integrable on [0, T ]. This assumption is motivated

by a problem arising in the theory of shallow membrane caps (see [10], [13]), which

is controlled by the equation

(t3u′)′ +
t3

8u2
− a0

t3

u
− b0t

2γ−1 = 0, a0 > 0, b0 > 0, γ > 1,

with p(t) = t3. We see that this is the case 1/p 6∈ L1[0, T ]. But in our paper, in

contrast to the above example, we will investigate equations where the right-hand

side f depends both on u and on u′.

Note that the importance of singular mixed problems consists also in the fact that

they arise when searching for positive, radially symmetric solutions to nonlinear

elliptic partial differential equations (see [9], [12]).

In this paper we prove existence of solutions of (1.1), (1.2) which are positive on

[0, T ). For other existence results of singular mixed problems we refer to [1]–[8], [11],

[14]–[22].

Here we extend results of [2], [19], [20] and offer new conditions which guarantee

the existence of positive solutions of the singular problem (1.1), (1.2) provided both

time and space singularities are allowed. Moreover, we also admit f to change its

sign (Theorem 2.2).

First, we recall some definitions and results. Let [a, b] ⊂ � , M ⊂ � 2 . We say that

a real valued function f satisfies the Carathéodory conditions on the set [a, b]×M if

(i) f(·, x, y) : [a, b] → � is measurable for all (x, y) ∈ M ,

(ii) f(t, ·, ·) : M → � is continuous for a.e. t ∈ [a, b],

(iii) for each compact set K ⊂ M there is a function mK ∈ L1[0, T ] such that

|f(t, x, y)| 6 mK(t) for a.e. t ∈ [a, b] and all (x, y) ∈ K.

We write f ∈ Car([a, b]×M ). By f ∈ Car((0, T )×D) we mean f ∈ Car([a, b]×D)

for each [a, b] ⊂ (0, T ) and f 6∈ Car([0, T ] × D).

Definition 1.1. Let f ∈ Car((0, T )×D). We say that f has a time singularity

at t = 0 and/or at t = T if there exists (x, y) ∈ D such that

∫ ε

0

|f(t, x, y)| dt = ∞ and/or

∫ T

T−ε

|f(t, x, y)| dt = ∞

for each sufficiently small ε > 0. The point t = 0 and/or t = T will be called a singular

point of f. Let D = (0,∞) × I , I ⊆ � . We say that f has a space singularity at
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x = 0 if

lim sup
x→0+

|f(t, x, y)| = ∞ for a.e. t ∈ [0, T ] and for some y ∈ I.

Let D = (0,∞) × (−∞, 0). We say that f has a space singularity at y = 0 if

lim sup
y→0−

|f(t, x, y)| = ∞ for a.e. t ∈ [0, T ] and for some x ∈ (0,∞).

Definition 1.2. By a solution of problem (1.1), (1.2) we understand a function

u ∈ C[0, T ] with pu′ ∈ AC[0, T ] satisfying conditions (1.2) and fulfilling

(1.3) (p(t)u′(t))′ + p(t)f(t, u(t), p(t)u′(t)) = 0 for a.e. t ∈ [0, T ].

Now consider an auxiliar regular problem

(1.4) (q(t)u′)′ + h(t, u, q(t)u′) = 0, u′(0) = 0, u(T ) = 0,

where q ∈ C[0, T ] is positive on [0, T ] and h ∈ Car([0, T ]× � 2 ).

Definition 1.3. A solution of the regular problem (1.4) is defined as a func-

tion u ∈ C1[0, T ] with qu′ ∈ AC[0, T ] sastisfying u′(0) = u(T ) = 0 and fulfilling

(q(t)u′(t))′ + h(t, u(t), q(t)u′(t)) = 0 for a.e. t ∈ [0, T ].

In the proofs of our main results we will use the following lower and upper functions

method for problem (1.4).

Definition 1.4. A function σ ∈ C[0, T ] is called a lower function of (1.4) if

there exists a finite set Σ ⊂ (0, T ) such that qσ′ ∈ ACloc([0, T ]\Σ), σ′(τ+), σ′(τ−) ∈
� for each τ ∈ Σ,

(1.5) (q(t)σ′(t))′ + h(t, σ(t), q(t)σ′(t)) > 0 for a.e. t ∈ [0, T ]

and

(1.6) σ′(0) > 0, σ(T ) 6 0, σ′(τ−) < σ′(τ+) for each τ ∈ Σ.

If the inequalities in (1.5) and (1.6) are reversed, then σ is called an upper function

of (1.4).
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Lemma 1.5 ([20], Theorem 2.3). Let σ1 and σ2 be a lower function and an upper

function for problem (1.4) such that σ1 6 σ2 on [0, T ]. Assume also that there is a

function ψ ∈ L1[0, T ] such that

(1.7) |h(t, x, y)| 6 ψ(t) for a.e. t ∈ [0, T ], all x ∈ [σ1(t), σ2(t)], y ∈ � .

Then problem (1.4) has a solution u ∈ C1[0, T ] satisfying qu′ ∈ AC[0, T ] and

(1.8) σ1(t) 6 u(t) 6 σ2(t) for t ∈ [0, T ].

2. Main results

The first existence result for the singular problem (1.1), (1.2) will be proved under

the assumptions

(2.1) p ∈ C[0, T ], p > 0 on (0, T ], 1/p need not belong to L1[0, T ],

and

(2.2)











D = (0,∞) × (−∞, 0), f ∈ Car((0, T )× D),

f can have time singularities at t = 0, t = T,

f can have space singularities at x = 0, y = 0.

Theorem 2.1. Let (2.1), (2.2) hold. Assume that there exist ε ∈ (0, 1), ν ∈ (0, T ),

c ∈ (ν,∞) and positive functions ϕ ∈ L1loc
(0, T ), ω ∈ C(0,∞), h ∈ C[0,∞) such

that

1

p(t)

∫ t

0

p(s)ϕ(s) ds ∈ L1loc
[0, T ),(2.3)

f(t, P (t),−c) = 0 for a.e. t ∈ (0, T ),(2.4)

ε 6 f(t, x, y) for a.e. t ∈ (0, ν], all x ∈ (0, P (t)], y ∈ [−ν, 0),(2.5)

and

(2.6) 0 6 f(t, x, y) 6 ϕ(t)(ω(x) + h(x))

for a.e. t ∈ (0, T ), all x ∈ (0, P (t)], y ∈ [−c, 0),

where

(2.7) P (t) = c

∫ T

t

ds

p(s)
for t ∈ (0, T ],
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ω is nonincreasing, h is nondecreasing and

(2.8) lim
x→∞

h(x)

x
<∞.

Then problem (1.1), (1.2) has a solution u ∈ C[0, T ] positive and decreasing on [0, T )

with pu′ ∈ AC[0, T ].

�������
. Condition ϕ ∈ L1loc

(0, T ) or ϕ ∈ L1loc
[0, T ) means that ϕ ∈ L1[a, b] for

each [a, b] ⊂ (0, T ) or [a, b] ⊂ [0, T ), respectively. Functions satisfying (2.3) are for

example p(t) = tα and ϕ(t) = t−β + (T − t)−3, where α > 1, β ∈ (0, 2).
	�
��
���

. Let k ∈ � , k > 3/T . In the following Steps 1–5 we argue as in the proof

of Theorem 3.1 in [20]. So we will show just an abridgement of these steps.� �����
1. � ����
��������������! "�$# % �����$&' . For t ∈ [0, T ], x, y ∈ � put

(2.9) αk(t, x) =











P (t) if x > P (t),

x if 1/k 6 x 6 P (t),

1/k if x < 1/k,

and

βk(y) =











−1/k if y > −1/k,

y if − c 6 y 6 −1/k,

−c if y < −c,
and

(2.10) γ(y) =











ε if y > −ν,
ε(c+ y)(c− ν)−1 if − c < y < −ν,
0 if y 6 −c.

For a.e. t ∈ [0, T ] and all x, y ∈ � define

fk(t, x, y) =











γ(y) if t ∈ [0, 1/k),

f(t, αk(t, x), βk(y)) if t ∈ [1/k, T − 1/k],

0 if t ∈ (T − 1/k, T ]

and

(2.11) pk(t) =

{

max{p(t), p(1/k)} if t ∈ [0, 1/k),

p(t) if t ∈ [1/k, T ].

Then pk ∈ C[0, T ], pk > 0 on [0, T ], and there is ψk ∈ L1[0, T ] such that

(2.12) |pk(t)fk(t, x, y)| 6 ψk(t) for a.e. t ∈ [0, T ] and all x, y ∈ � .
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We have got a sequence of auxiliary regular problems

(2.13) (pk(t)u′)′ + pk(t)fk(t, u, pk(t)u′) = 0, u′(0) = 0, u(T ) = 0,

k ∈ � , k > 3/T. If we put

σ1(t) = 0, σ2k(t) = c

∫ T

t

ds

pk(s)
for t ∈ [0, T ],

then σ1 and σ2k are lower and upper functions of (2.13) and, by Lemma 1.5, problem

(2.13) has a solution uk ∈ C1[0, T ] satisfying

(2.14) 0 6 uk(t) 6 σ2k(t) for t ∈ [0, T ].

� �����
2. � ��
(���$
��)�� *������������ +���,������
��������-�����. "��# % �����$&/ uk. Con-

ditions (2.14) and uk(T ) = σ2k(T ) = 0, pk(0)u′k(0) = 0 and the monotonicity of pku
′

k

give

(2.15) −c 6 pk(t)u′k(t) 6 0 on [0, T ].

Choose an arbitrary compact interval J ⊂ (0, T ). By virtue of (2.5) and (2.15) there

is kJ ∈ � such that for each k ∈ � , k > kJ

(2.16)

{

1/kJ 6 uk(t) 6 kJ , −kJ 6 u′k(t) 6 −1/kJ ,

−c 6 pk(t)u′k(t) 6 −1/kJ for t ∈ J,

and hence there is ψ ∈ L1(J) such that

(2.17) |pk(t)fk(t, uk(t), pk(t)u′k(t))| 6 ψ(t) a.e. on J.

� �����
3. 0 ��& 1 ��
�2���&/34�5���6�7 "� 8 % ��&/34�9���:������
��������-�����; "��# % <������&/ 

. Using conditions (2.16), (2.17) we see that the sequences {uk} and {pku
′

k}
are equibounded and equicontinuous on J. Therefore by the Arzelà-Ascoli theorem

and the diagonalization principle we can choose u ∈ C(0, T ) and subsequences of

{uk} and of {pku
′

k} which we denote for simplicity in the same way such that

lim
k→∞

uk = u, lim
k→∞

pku
′

k = pu′ locally uniformly on (0, T ),(2.18)

0 < u(t) 6 P (t), −c 6 p(t)u′(t) < 0 for t ∈ (0, T ).(2.19)

� �����
4. 0 ��& 1 ��
�2���&/34�=���6�> "� 8 % ��&/3?�@���-������
��������������@��
(�$A�<#����� 

.
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Choose an arbitrary ξ ∈ (0, T ) such that

f(ξ, ·, ·) is continuous on (0,∞) × (−∞, 0).

There exists a compact interval Jξ ⊂ (0, T ) with ξ ∈ Jξ and, by (2.16), we can find

kξ ∈ � such that for each k > kξ

uk(ξ) >
1

kξ

, pk(ξ)u′k(ξ) 6 − 1

kξ

, Jξ ⊂
[1

k
, T − 1

k

]

.

Therefore

(2.20)
lim

k→∞

pk(t)fk(t, uk(t), pk(t)u′k(t)) = p(t)f(t, u(t), p(t)u′(t))

for a.e. t ∈ (0, T ).

Integrating (2.13), letting k → ∞ and using the Lebesgue convergence theorem we
get for an arbitrary t ∈ (0, T )

(2.21) p
(T

2

)

u′
(T

2

)

− p(t)u′(t) =

∫ t

1

2
T

p(τ)f(τ, u(τ), p(τ)u′(τ)) dτ,

i.e. (1.3) is valid.� �����
5.
	B
(�$�/��
(������ +���

pu′. According to (2.13) and (2.15) we have for each

k > 3/T

∫ T

0

pk(s)fk(s, uk(s), pk(s)u′k(s)) ds = −pk(T )u′k(T ) ∈ (0, c],

which together with (2.6), (2.19) and (2.20) yields, by the Fatou lemma, that

p(t)f(t, u(t), p(t)u′(t)) ∈ L1[0, T ]. Therefore, by (2.21), pu′ ∈ AC[0, T ].� �����
6.
	�
��$�/�C
(������ D���

u. Since pu′ is continuous on [0, T ] and 1/p is con-

tinuous on (0, T ], we get u ∈ C(0, T ]. It remains to prove that u ∈ C[0, T ]. By (2.19)

u is decreasing on (0, T ), which yields

0 < A = lim
t→0+

u(t).

Therefore it is sufficient to prove that A <∞.

By (1.3), (2.6) and (2.19) we deduce that

(2.22) −(p(t)u′(t))′ 6 p(t)ϕ(t)(ω(u(t)) + h(u(t)) for a.e. t ∈ (0, T ).
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Let B0 ∈ (0,∞) and x0 ∈ (0, A) be such that

ω(x0) = h(x0) +B0 ∈ (0,∞).

Then there is t0 ∈ (0, T ) such that

u(t0) = x0, x0 < u(t) < A for t ∈ (0, t0),

and having in mind monotonicity of ω and h we obtain

(2.23) −(p(t)u′(t))′ 6 p(t)ϕ(t)(2h(A) +B0) for a.e. t ∈ (0, t0],

where h(A) = lim
x→A

h(x). By virtue of (2.8) we can find a ∈ (0,∞) such that

lim
x→∞

h(x)

x
6 a

and due to (2.3) there is ta ∈ (0, t0) satisfying

∫ ta

0

1

p(s)

∫ s

0

p(τ)ϕ(τ) dτ ds 6
1

3a
.

Integrating (2.23) we get

−u′(s) 6 (2h(A) +B0)
1

p(s)

∫ s

0

p(τ)ϕ(τ) dτ, s ∈ (0, t0],

and integrating the last inequality we obtain

u(t) − u(ta) 6 (2h(A) +B0)

∫ ta

t

1

p(s)

∫ s

0

p(τ)ϕ(τ) dτ ds, t ∈ (0, ta).

Hence, for t→ 0+ we get

A 6 u(ta) + (2h(A) +B0)

∫ ta

0

1

p(s)

∫ s

0

p(τ)ϕ(τ) dτ ds 6 u(ta) +
2h(A) +B0

3a

and

1 6
u(ta)

A
+

2h(A) +B0

3aA
= F (A).

Since lim
x→∞

F (x) 6 2/3, there exists A∗ ∈ (0,∞) such that F (x) < 1 for each x > A∗.

Since F (A) > 1, we have A 6 A∗. �

The second existence result is applicable to sign-changing nonlinearities. Now we

will assume (2.1) and

(2.24)











D = (0,∞) × � , f ∈ Car((0, T ) × D),

f can have time singularities at t = 0, t = T,

f can have a space singularity at x = 0.
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Theorem 2.2. Let (2.1) and (2.24) hold. Assume that there exist r, ε, µ, ν ∈
(0,∞), c ∈ (ν,∞) and positive functions ϕ ∈ L1loc

(0, T ), ψ ∈ L1[0, T ], ω ∈ C(0,∞),

h ∈ C[0,∞) such that

1

p(t)

∫ t

0

p(s)ψ(s) ds ∈ L1[0, T ],(2.25)

f(t, P (t),−c) 6 0 for a.e. t ∈ (0, T ),(2.26)

ε 6 f(t, x, y) for a.e. t ∈ (0, T ), all x ∈ (0, ν], y ∈ [−ν, ν],(2.27)

and

(2.28)

{

−ψ(t) 6 f(t, x, y) 6 ϕ(t)(ω(x) + h(x))(|y| + 1) + ry2,

for a.e. t ∈ (0, T ), all x ∈ (0, P (t)], y ∈ � ,

hold, where ω is nonincreasing, h is nondecreasing, ϕ and h satisfy (2.3) and (2.8),

respectively, and P is given by (2.7). Then problem (1.1), (1.2) has a positive solution

u ∈ C[0, T ] with pu′ ∈ AC[0, T ].

	�
��
���
. Let k ∈ � , k > 3/T .� �����
1. � ����
��������������� "��# % ������&/ . For t ∈ [0, T ], x, y ∈ � define αk, γ

and pk by (2.9), (2.10) and (2.11), respectively. Consider a sequence {%k} ⊂ (1,∞)

satisfying lim
k→∞

%k = ∞, and put for a.e. t ∈ [0, T ] and all x, y ∈ �

βk(y) =

{

y if |y| 6 %k,

%k sign y if |y| > %k,

fk(t, x, y) =

{

γ(y) if t ∈ [0, 1/k) ∪ (T − 1/k, T ],

f(t, αk(t, x), βk(y)) if t ∈ [1/k, T − 1/k].

In such a way we have got a sequence of regular problems (2.13) fulfilling (2.12) and

consequently a sequence of their solutions {uk} satisfying (2.14).� �����
2. � ��
����$
(�E�� F������������ G���H������
��������������! "��# % ������&/ uk. With-

out loss of generality we can assume that ε > 0 is so small that

(2.29) ε

∫ T

0

p(s) ds < ν.

(I) Assume that uk(0) > ν. Since uk(T ) = 0 there exist s0 ∈ [0, T ), τ0 ∈ (s0, T ] such

that

(2.30) uk(t) > ν for t ∈ [0, s0]
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and

uk(s0) = ν, uk(t) < ν for t ∈ (s0, τ0].

Then u′k(s0) 6 0 and we will consider two cases: −ν < pk(s0)u
′

k(s0) 6 0 and

pk(s0)u
′

k(s0) 6 −ν.
0 �$ "� � . Let −ν < pk(s0)u

′

k(s0) 6 0. Then there exists t0 ∈ (s0, T ] such that for

t ∈ [s0, t0]

0 6 uk(t) 6 ν, |pk(t)u′k(t)| 6 ν.

By (2.27) we get

pk(t)u′k(t) 6 −ε
∫ t

s0

p(s) ds+ pk(s0)u
′

k(s0) 6 −ε
∫ t

s0

p(s) ds, t ∈ (s0, t0],

i.e. for t ∈ [s0, t0]

(2.31) pk(t)u′k(t) 6 −ε
∫ t

s0

p(s) ds.

Therefore uk(t) < ν, u′k(t) < 0 and pk(t)u′k(t) > −ν on (s0, t0]. Assume that t0 < T .

Then there exists t1 ∈ (t0, T ] such that pk(t)u′k(t) < −ν for t ∈ (t0, t1], which yields

uk(t) < ν and (2.31) on [t0, t1]. Assume that t1 < T. Then there exists t2 ∈ (t1, T ]

such that

−ν < −ε
∫ t

s0

p(s) ds < pk(t)u′k(t) 6 0 for t ∈ (t1, t2].

This implies that uk < ν on (t1, t2] and, by (2.27),

pk(t)u′k(t) 6 −ε
∫ t

t1

p(s) ds+ pk(t1)u
′

k(t1) 6 −ε
∫ t

s0

p(s) ds for t ∈ (t1, t2],

a contradiction. So, we have proved t1 = T and hence, by (2.29),

(2.32) (2.31) and uk(t) < ν hold on (s0, T ].

0 �$ "� I . Let pk(s0)u
′

k(s0) 6 −ν. Then there exists s1 ∈ (s0, T ] such that 0 6

uk(t) < ν for t ∈ (s0, s1] and, by (2.29),

pk(t)u′k(t) 6 −ε
∫ t

s0

p(s) ds, t ∈ (s0, s1].

Assume that s1 < T. Then there exists s2 ∈ (s1, T ] such that

−ν < −ε
∫ t

s0

p(s) ds < pk(t)u′k(t) 6 0 for t ∈ (s1, s2].
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This implies that uk < ν on (s1, s2] and, by (2.27),

pk(t)u′k(t) < −ε
∫ t

s1

p(s) ds+ pk(s1)u
′

k(s1) 6 −ε
∫ t

s0

p(s) ds for t ∈ (s1, s2],

a contradiction. So, we have proved s1 = T , which yields (2.32). Denote

(2.33) M = max{p(t) : t ∈ [0, T ]}.

Then, using (2.30) and integrating (2.31), we obtain

(2.34) uk(t) >

{

ν for t ∈ [0, s0],

εM−1
∫ T

t

∫ s

s0

p(τ) dτ ds for t ∈ [s0, T ].

(II) Assume that uk(0) ∈ [0, ν). Since pk(0)u′k(0) = 0, we can argue as in (I) Case A

with s0 = 0 and derive

(2.35) pk(t)u′k(t) 6 −ε
∫ t

0

p(s) ds for t ∈ [0, T ].

Integrating this inequality and using (2.33), we have

(2.36) uk(t) > εM−1

∫ T

t

∫ s

0

p(τ) dτ ds for t ∈ [0, T ].

Choose an arbitrary interval

J = [a, b] ⊂ (0, T ).

According to (2.7), (2.14), (2.34) and (2.36) there exists k0 ∈ � such that for each
k > k0

(2.37) J ⊂ [1/k, T − 1/k] and cb 6 uk(t) 6 P (a) for t ∈ J,

where

cb = min

{

ν, εM−1

∫ T

b

∫ s

b

p(τ) dτ ds

}

.

� �����
3. � ��
����$
(�+�� F������������ !��� |pku

′

k|
��&

J. By virtue of (2.37) there

exists ξk ∈ (a, b) such that

pk(ξk)u′k(ξk) =
uk(b) − uk(a)

b− a
pk(ξk)
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and, using (2.33) and (2.37), we have

(2.38) |pk(ξk)u′k(ξk)| 6
MP (a)

T
= mJ .

Let max{|pk(t)u′k(t)| : t ∈ [a, b]} = |pk(ηk)u′k(ηk)| = Rk > mJ . Then we can find

ζk ∈ [a, b] such that

|pk(ζk)u′k(ζk)| = mJ and |pk(t)u′k(t)| > mJ for t ∈ [min{ζk, ηk},max{ζk, ηk}].

Assume that pk(ηk)u′k(ηk) = Rk and ζk > ηk. By (2.9), (2.11), (2.28), (2.33), (2.37),

∫ ηk

ζk

(pk(t)u′k(t))′ dt

pk(t)u′k(t) + 1
6 M

[

(

ω(cb) + h(P (a))
)

∫ b

a

ϕ(t) dt+ rMP (a)

]

= MJ ,

and consequently

(2.39)

∫ Rk

mJ

ds

s+ 1
6 MJ .

Assume that pk(ηk)u′k(ηk) = −Rk and ζk < ηk. Similarly as above we get

∫ ηk

ζk

−(pk(t)u′k(t))′ dt

−pk(t)u′k(t) + 1
6 MJ ,

which gives (2.39). Since there exists %J > 0 such that
∫ %J

mJ
(s + 1)−1 ds > MJ , we

get Rk < %J . If pk(ηk)u′k(ηk) = Rk and ζk < ηk or pk(ηk)u′k(ηk) = −Rk and ζk > ηk,

we get by (2.28)

Rk 6 mJ +

∫ b

a

p(t)ψ(t) dt.

We can choose

%J > mJ +

∫ b

a

p(t)ψ(t) dt

and then we have

(2.40) |pku
′

k(t)| 6 %J , |u′k(t)| 6
%J

cJ
for t ∈ J,

where cJ = min{p(t) : t ∈ J}.� �����
4. 0 �$& 1 �C
�2$��&'34�J���@ "� 8 % ��&/3?�� 5���K������
��������������L "��# % <������&/ M��&/NO��
��$A�#����� 

. Having in mind (2.37) and (2.40) we get (2.17) and

hence condition (2.18) and the inequality

(2.41) 0 < u(t) 6 P (t) for t ∈ (0, T )
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are valid. Further we can follow Step 4 of the proof of Theorem 2.1 to obtain (2.20)

and (2.21).� �����
5.
	B
(�$�/��
(������ D���

pu′. By (2.32) and (2.35) we have pk(T )u′k(T ) < 0.

The conditions (2.14) and uk(T ) = σ2k(T ) = 0 give

pk(t)
uk(T ) − uk(t)

T − t
> pk(t)

σ2k(T ) − σ2k(t)

T − t
for t ∈ (0, T ),

which yields

(2.42) −c 6 pk(T )u′k(T ) < 0.

According to (2.13) and (2.42) we have for each k > 3/T

∫ T

0

pk(s)fk(s, uk(s), pk(s)u′k(s)) ds = −pk(T )u′k(T ) ∈ (0, c].

This together with (2.28), (2.41), (2.20) yields, by the Fatou lemma, that

p(t)f(t, u(t), p(t)u′(t)) ∈ L1[0, T ].

Therefore, by (2.21), pu′ ∈ AC[0, T ].� �����
6.

	B
����/��
(������ P���
u. We will prove that u ∈ C[0, T ]. Since pu′ is

continuous on [0, T ] and 1/p is continuous on (0, T ], we get u ∈ C(0, T ]. It remains

to prove that u is right continuous at t = 0. Denote

(2.43) lim sup
t→0+

u(t) = A.

(i) Assume A < ν. By (2.41) and (1.2) there is a δ0 > 0 such that

u(t) ∈ (0, ν), |p(t)u′(t)| 6 ν for t ∈ (0, δ0),

and so, due to (2.27), u is strictly decreasing on (0, δ0). Hence

lim
t→0+

u(t) = A ∈ (0, ν),

which yields u ∈ C[0, T ].

(ii) Assume A > ν. Then there exist t0 ∈ [0, T ) and t1 ∈ (t0, T ] such that u(t0+) =

ν and u(t) < ν for t ∈ (t0, t1]. If t0 = 0, we get u ∈ C[0, T ] as in (i). Now, assume

that t0 > 0. Then we argue as in Step 2 and deduce t1 = T. Hence, according
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to (1.2), we can find t∗ ∈ (0, T ) such that ν 6 u(t) for t ∈ (0, t∗). By (2.8) we can

find a ∈ (0,∞) such that

lim
x→∞

h(x)

x
6 a.

Further, by (2.3), (2.43) and (1.2), there is δ∗ ∈ (0, t∗) such that

(2.44)

∫ δ∗

0

1

p(s)

∫ s

0

p(τ)ϕ(τ) dτ ds 6
1

2(ν + 1)a
,

ν 6 u(t) 6 A+ 1, |p(t)u′(t)| 6 ν for t ∈ (0, δ∗).

Moreover, (2.27) and (2.28) yield ε 6 ϕ(t)[ω(ν) + h(ν)] for a.e. t ∈ (0, T ). Thus for

t ∈ [0, T ]

0 6
ε

ω(ν) + h(ν)

∫ t

0

1

p(s)

∫ s

0

p(τ) dτ ds 6

∫ t

0

1

p(s)

∫ s

0

p(τ)ϕ(τ) dτ ds,

and so, due to (2.3),

(2.45)

∫ δ∗

0

1

p(s)

∫ s

0

p(τ) dτ ds = c∗ ∈ (0,∞).

Integrating (2.28) and using (2.44) we get for t ∈ (0, δ∗)

−p(t)u′(t) 6 (ω(ν) + h(A+ 1))(ν + 1)

∫ t

0

p(τ)ϕ(τ) dτ + rν2

∫ t

0

p(τ) dτ

and integrating this inequality once more and using (2.44) and (2.45) we have for

t ∈ (0, δ∗)

u(t) 6 u(δ∗) + (ω(ν) + h(A+ 1))
1

2a
+ rν2c∗.

According to (2.43) we can choose a sequence {tn} ⊂ (0, δ∗), tn → 0, and u(tn) → A.

Therefore

A 6 u(δ∗) + (ω(ν) + h(A+ 1))
1

2a
+ rν2c∗

and

1 6
1

A

[

u(δ∗) +
ω(ν)

2a
+ rν2c∗

]

+
(A+ 1)h(A+ 1)

2aA(A+ 1)
= F (A).

Since lim
x→∞

F (x) 6 1/2, there exists A∗ ∈ (0,∞) such that F (x) < 1 for each x > A∗.

Since F (A) > 1, we get A 6 A∗, which means that u is bounded on [0, T ]. Due to

(2.44) and (2.28)

−p(t)ψ(t) 6 −(p(t)u′(t))′ 6 p(t)[ϕ(t)(ω(ν) + h(A+ 1))(ν + 1) + rν2]
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holds for a.e. t ∈ (0, δ∗). If we put K1 = (ω(ν) + h(A + 1))(ν + 1), K2 = rν2 and

integrate the above inequalities, we get on (0, δ∗)

− 1

p(t)

∫ t

0

p(τ)ψ(τ) dτ 6 −u′(t) 6 K1

1

p(t)

∫ t

0

p(τ)ϕ(τ) dτ +K2

1

p(t)

∫ t

0

p(τ) dτ.

Due to (2.3), (2.25) and (2.45) there exists h0 ∈ L1[0, δ
∗] such that |u′(t)| 6 h0(t)

for a.e. t ∈ (0, δ∗). Therefore u ∈ C[0, δ∗], which completes the proof. �

3. Examples

In Theorems 2.1 and 2.2 we assume that ω ∈ C(0,∞) is positive and nonincreasing

but no additional assumption about the behaviour of ω near the singularity x = 0 is

required. Therefore ω(x) can go to +∞ for x→ 0+ very quickly, which means that

f(t, x, y) can have at x = 0 a strong singularity.

Q �����.��#��
3.1. Let α, γ, θ ∈ (0,∞), c1, c2 ∈ [0,∞), β ∈ [0, 1], 0 < δ < min{2,

θ + 1}. By Theorem 2.1 the problem

(tθu′)′ + tθ−δ(c1u
−α + c2u

β + 1)(1 − (tθ|u′|)γ) = 0,(3.1)

lim
t→0+

tθu′(t) = 0, u(1) = 0(3.2)

has a positive decreasing solution.

To see this we put p(t) = tθ, ϕ(t) = t−δ, ν = 1/2, ε = 1 − (1/2)γ , c = 1,

ω(x) = c1x
−α + 1, h(x) = c2x

β + 1 and f(t, x, y) = t−δ(c1x
−α + c2x

β + 1)(1− |y|γ).

R,������
�S
3.2. Note that:

1. Since α can be chosen in (0,∞), equation (3.1) can have both a weak singularity

at x = 0 (if we choose α ∈ (0, 1)) and a strong singularity at x = 0 (if we choose

α > 1). Hence we generalize the results of [2] where only weak singularities are

admitted. See Examples 2.2 and 2.3 in [2].

2. θ ∈ (0,∞) implies that we can choose θ > 1 and get 1/p 6∈ L1[0, 1].

3. Similarly, 0 < δ < min{2, θ + 1} implies that if θ > 1 we can choose δ ∈ [1, 2)

and get ϕ 6∈ L1[0, 1].

4. Since β ∈ [0, 1], the function f can have for x → ∞ either a sublinear growth
(if β ∈ (0, 1)) or a linear growth (if β = 1) or f can be bounded for large x (if β = 0).

5. γ ∈ (0,∞) yields that f can have a similar behaviour for large y as for large

x but, moreover, f can have also a superlinear growth for |y| → ∞ (if we choose

γ > 1).
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Q �����.��#��
3.3. Let α ∈ [0,∞), β ∈ [0, 1], γ, θ ∈ [1,∞), δ ∈ [1, 2). Denote

q(t) = t−δ + (1 − t)−γ , q1(t) = 1/
√
t+ 1/

√
1 − t and consider the equation

(tθu′)′ + tθq(t)[(u−α + uβ + 1)|1 + tθu′| + 4(1 + tθu′)2]

− tθq1(t)(sin
2(u+ 1) + 1) = 0.

By Theorem 2.2 the problem (3.3), (3.2) has a positive solution.

To see this we put p(t) = tθ, ϕ(t) = q(t) + 2q1(t), ψ(t) = 2q1(t), r = 4, ε = 1,

ν = 1/3, c = 1, ω(x) = x−α + 1, h(x) = xβ + 1 and f(t, x, y) = q(t)[(x−α + xβ +

1)|1 + y| + 4(1 + y)2] − q1(t)(sin
2(x+ 1) + 1).

R,������
�S
3.4. In Example 3.1 the function f is nonnegative on the set where

we have found solutions, i.e. for t ∈ (0, 1], x ∈ (0,∞), y ∈ [−1, 0). Let us show that

in Example 3.3 the function f changes its sign. We can see that f(t, x,−1) < 0 for

t ∈ (0, 1), x ∈ (0,∞). On the other hand, for t ∈ (0, 1), x ∈ (0, 1/3], y ∈ [−1/3, 1/3]

we have f(t, x, y) > 1.
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