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1. Introduction

In 1957 Kurzweil [11] considered highly oscillatory differential equations, and intro-

duced generalized solutions to such equations. If the differential equation is specified

as

y′ = f(x),

then the resulting integral is equivalent to an integral introduced by Perron in 1915.

If the definition is formulated directly rather than through differential equations then

it amounts to a small but ingenious modification of the Riemann definition. Henstock

[6], [7], [8], [10], [9] rediscovered Kurzweil’s approach and made further contributions.

Today this integral is known under various names, such as Kurzweil’s, Henstock’s,

Kurzweil-Henstock’s and the generalized Riemann integral. We shall refer to it as

Kurzweil’s integral. It is becoming popular and widely used. McLeod’s book [16]

is intended for (university) teachers, Bartle’s book [2] and Gordon’s publication [5]

are aimed at graduate level, however with different focuses. Bartle believed that

Kurzweil’s integral should become the integral. Lanzhou lectures by Lee Peng Yee

[14] are also directed at an advanced audience. Muldowney [17] treats the subject in

an abstract setting. In contrast, [3] and [4] contain an introduction to the Kurzweil
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theory as a part of a course on real analysis. The monograph by Lee and Výborný

[13] tries to cater to all tastes and needs: Chapter 2 can be used as an elementary

introduction to Kurzweil’s theory, however advanced topics are included later. More-

over the last chapter describes applications to complex analysis, Fourier series and

other topics. There are also resources in languages other than English, by Mawhin

in [15], by Kurzweil himself in [12], and lecture notes in Czech by Schwabik.

In this paper we introduce Maple procedures for illustrating the definition of the

Kurzweil integral. With some limitations (discussed below), given a function f , an

interval [a, b] and a strictly positive δ, the procedures produce a δ-fine partition

and the corresponding Riemann sum numerically and graphically. The knowledge of

Kurzweil’s theory needed for understanding this paper is minimal; for example, the

material expounded in the first half of the last chapter of [1] is sufficient.

2. Fine partitions

If

a = x0 < x1 < . . . < xn = b

and ξi ∈ [xi−1, xi] then the set of couples

D ≡ {(ξi, [xi−1, xi]); i = 1, . . . , n}

is called a tagged division of [a, b], and the point ξi is the tag of the interval [xi−1, xi].

The term partition is used interchangeably with the term tagged division. If δ :

[a, b] 7→ (0,∞) then by the usual definition the tagged division D is called δ-fine if

ξi − δ(ξi) < xi−1 < xi < ξi + δ(ξi)

for i = 1, . . . , n. We find it convenient to modify this definition by demanding instead

ξi − δ(ξi) 6 xi−1 < xi 6 ξi + δ(ξi).

This new definition of δ-fine does not affect the definition of the integral (Defini-

tion 15.2 in [1] or Definition 2.4.1 in [13]). It is an important feature of Kurzweil’s

theory that for a suitable δ, a particular point of [a, b] must become a tag of at least

one subinterval of a δ-fine partition. This feature is preserved with our new defini-

tion of δ-fine, but perhaps a different δ must be used. For instance, if δ(x) = |x|
(for non-zero x) then a traditional δ-fine partition of [−1/2, 1/2] must have zero as

a tag of at least one (and possibly two) subintervals.1 With our definition of δ-fine,

1 This is sometimes referred to as: anchoring the partition on the point, in this case on
zero.
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δ(x) = 0.9x (for non-zero x) or something similar will force zero to become a tag of

a subinterval.

The theorem guaranteeing the existence of a δ-fine partition of a compact interval

for a strictly positive δ is known as Cousin’s lemma. Theorem 2.3.6 in [13] states

the equivalence of Cousin’s lemma and the completeness of the reals. This makes it

clear that a computer cannot always produce a δ-fine partition for a given strictly

positive δ. For the purposes of our programs, we satisfy ourselves with the following

substitute for Cousin’s lemma.

Theorem on approximate δ-fine partitions. Let δ be a positive function on

a compact interval [a, b] and ε > 0. Then we can define a strictly increasing finite

sequence

{x0, x1, . . . , xN}

such that

(i) x0 = a,

(ii) (a) either xi 6 xi−1 + δ(xi−1),

(b) or xi−1 > xi − δ(xi),

(c) or 0 < xi − xi−1 6 ε for i = 1, 2, . . . , N . If neither (a) nor (b) occurs then

the interval (xi−1, xi) contains a point c such that lim inf
x→c

δ(x) = 0.

(iii) xN = b. If the set S of points c where lim inf
x→c

δ(x) = 0 is finite then all xi with

0 < i 6 N satisfy either (ii)(a) or (ii)(b).

���������
. Without loss of generality we assume that δ(x) < b − x for x < b. Let

n0 = 0, xn0
= a and if xnk

< b with k > 0 has been defined we define xnk+1
as

follows. First, let y0 = xnk
and ym+1 = ym + δ(ym) for a nonnegative integer m.

The sequence n 7→ yn is well defined, strictly increasing and bounded by b. Denote

its limit by l. If l < y0 +ε, l < b and the set S is infinite we set xnk+1
= min(b, y0 +ε)

otherwise let m be the first integer such that ym > l − δ(l). We now set xnk+i = yi

for i = 1, . . . , m and xnk+1
= l. If S is finite let d be the smallest distance between

distinct points of S. Let us now assume, contrary to what we want to prove that

the sequence k 7→ xnk
is infinite. Since xnk+1

−xnk
> min(d, ε) if S is finite and > ε

otherwise for k > 1, the sequence must diverge to +∞, this however contradicts the
inequality xnk

6 b. Consequently there is a largest xnk
and we denote it by xN . If

S is finite then the terms of the sequence n 7→ xn by its very construction satisfy

the requirements (ii)(a) or (ii)(b). If xi satisfies neither (ii)(a) nor (ii)(b) then the

interval (xi−1, xi) contains a limit l of some sequence of y’s and clearly l ∈ S. �

If the interval [xi−1, xi] satisfies (ii)(a) then we tag this interval by xi−1, and if it

satisfies (ii)(b) then we tag it by xi. If it doesn’t satisfy either then we tag it by any

339



point in the interval and justify this by saying that the interval is ‘small’. Then the

intervals [xi−1, xi] together with their tags form an approximate δ-fine partition.

3. Our programs

The above theorem is the theoretical basis of our programs for producing an ap-

proximate δ-fine partition and the corresponding Riemann sum. However it is still

not practical enough for implementation on a computer. If, for instance, δ(x) = x2

(for non-zero x) and [a, b] = [−1/2, 1/2] then a program based only on the algo-

rithm described in the theorem will quickly stall due to round-off errors. Similarly,

if δ(x) = 10−11 then the sequence defined by x0 = −1 and xi = xi−1 + δ(xi−1) is

diverging to∞ but, on a computer calculating with 10 significant digits, the approxi-
mations to xi will all equal −1. We therefore build into the program some safeguards

preventing this and similar things happening, in particular δ(xi) becoming too small.

We also have to cater for the possible inability of the computer to calculate exactly

the limit l mentioned in the proof of the theorem.

We have also incorporated improvements to the efficiency of the algorithm. For

example, on the interval [a, b], if the limit l equals b then the program finds an

approximate δ-fine partition by repeatedly bisecting the interval [a, b] and testing

the left-half of the bisected subinterval. As soon as this subinterval is δ-fine, the

program seeks to extend this subinterval to the right (still keeping it δ-fine) by

evaluating δ at the midpoint and both endpoints of the subinterval. If l < b then

we apply the above procedure on [a, l] then find the next limit l̄ and continue the

process on [l, l̄].

The set S mentioned in the proof of the theorem might be infinite or round-off

and other computational limitations might preclude S being found. In these cases

the program takes appropriate action, but might produce only an approximate δ-fine

partition.

4. Examples

Here we present four examples. In all four examples our programs produce Rie-

mann sums for proper δ-fine partitions, not approximate δ-fine partitions. More

examples, ready for use, are provided on Maple worksheets on our websites.

� 	�

�������
1. Let

f(x) =

{

(1 + 10x2)−1 for x < 0,

1

2
for x > 0
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and δ be defined by

δ(x) =











min(1.5, 0.15(1 + f(x) + f ′(x))−1) for x < 0,

0.01 for x = 0,

|x| for x > 0.

The integrand f in this example is a simple function that is continuous except at one

point, so Kurzweil’s integral is not really needed for integration of the function. We

wish to illustrate that with a suitable δ the tagged division is adjusted to the behavior

of the function, considered here on [−3, 1]. Figure 1 shows the graph produced

by our programs. The derivative f ′ in the definition of δ causes the subintervals

to shrink where f is changing rapidly. Note that in the figure there is only one

subinterval where the function is constant, but in contrast there are eight subintervals

on [−1.02, 0].

0

0.2

0.4

0.6

0.8

1

–3 –2 –1 1

Figure 1. Adjusting the partition to the integrand

� 	�

�������
2. Let

f(x) =

{√
x |cos(πx/50)| if x is a complete square,

−1 otherwise
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and δ be defined by

δ(x) =











0.1 for x = 0,

min(0.9(d√x e2 − x), 0.9(x − b√xc2)) if f(x) = −1,

min
(

1

2
, (1 + f(x))−1

)

otherwise.

(We chose f(x) = −1 rather than f(x) = 0 because the graph would have otherwise

coincided with the x axis.) In this example δ was chosen so that all the points that

are complete squares are chosen as tags. The graph on [0, 100] is shown in Figure 2.
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Figure 2. Anchoring the partition on complete squares

� 	�

�������
3. Let

f(x) =

{

|x|− 1
2 for x 6= 0,

0 for x = 0

and δ be defined by

δ(x) =

{

0.2|x| for x 6= 0,

0.005 for x = 0.
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The function f is Lebesgue integrable on [−0.6, 0.6] so it is also Kurzweil integrable.

The graph is shown in Figure 3. Now

∫ 0.6

−0.6

|x|− 1
2 dx = 3.098, and the Riemann sum = 2.773.

By similar reasoning to that in Example 2.4.3 of [13], it can be shown that for this

choice of δ the error is at most 0.438, in agreement with the results above. The

accuracy can easily be increased by changing δ appropriately but then the graph

may not be easily legible. For example, if δ is changed so that δ(0) = 0.001 then the

Riemann sum equals 2.927, but the graph is difficult to read near x = 0.
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Figure 3. Riemann sums for a Lebesgue integrable function

� 	�

�������
4. Let

f(x) =







(−1)nn for n ∈ � and 1

n + 1
< x 6

1

n
,

0 for x = 0
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and δ be defined by

δ(x) =



















min
( 1

n
− x, x − 1

n + 1

)

for n ∈ � and 1

n + 1
< x <

1

n
,

k−n for n ∈ � and x = n−1,

ε for x = 0.

If D ≡ {(ξi, [xi−1, xi]); i = 1, . . . , n} is a δ-fine partition then

∣

∣

∣

∣

n
∑

1

f(ξi)(xi − xi−1) −
∞
∑

1

(−1)i
1

i + 1

∣

∣

∣

∣

< 2ε + 2

∞
∑

i=1

1

ki
6 2ε + 2

1

k − 1
.

Since ε and k are arbitrary this proves the Kurzweil integrability of f and

∫ 1

0

f =

∞
∑

1

(−1)i
1

i + 1
.

The Riemann sum for f and D are illustrated in Figure 4, where the interval of

integration is [0, 1/2] and ε = 1/30 and k = 4.
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Figure 4. Riemann sums for a non-absolutely integrable f
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5. Limitations

Maple already provides procedures for illustrating Riemann sums. For a given f ,

interval [a, b] and natural number n these produce graphs or numerical values of the

Riemann sums. The interval [a, b] is divided into n subintervals and the function f

is evaluated either at the left, or the right, or in the middle, of each subinterval. For

instance, the commands leftsum and leftbox produce the Riemann sum and its

graph for the function f and the interval [a, b] subdivided into n subintervals with

f evaluated at the left-hand end-points of the subintervals. Some caution is needed

when illustrating convergence with any software because the computer is necessarily

a finite-state device. For a given f and n there are infinitely many Riemann sums

and Maple produces three of them. The definition of the Riemann integral requires

that, for sufficiently large n, all and not merely three Riemann sums are close to the

value of the integral.

In illustrating Riemann sums for a δ-fine tagged division there is an additional

difficulty because the number of subintervals is controlled indirectly by the function δ.

Again, for a given δ there are infinitely many δ-fine tagged divisions and consequently

infinitely many associated Riemann sums. We feel that it is not good enough to

produce a single Riemann sum, or even three of them. The produced sum should

be indicative of the difficulties of getting the Riemann sum close to the integral, so

it should be a ‘typical’ sum or even almost the worst possible sum. Producing a

typical Riemann sum is possible with our program. All that is usually needed is to

anchor (see [1] Remark 15.7 or [13] Remark 2.5.3) the partition on some ‘troublesome’

points. This was illustrated by Example 2 in the previous section. When teaching,

we feel that involving the students in choosing an appropriate δ is valuable. Many

elegant proofs in Kurzweil theory are facilitated by a judicious choice of δ.

6. Software availability

In accordance with the philosophy of open source software we offer our programs

for download free of charge from our websites

www.maths.uq.edu.au/~pa or www.maths.uq.edu.au/~rv.

Readers are welcome to use these programs, but we request that our authorship

be acknowledged and the programs not be modified without our permission. The

websites also contain instructions on how to use our programs. We welcome suggested

improvements and we shall acknowledge them if we incorporate them.
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[15] J.Mawhin: Introduction à l’Analyse. 3rd edition, Cabay, Louvain-la-Neuve, 1983.

Zbl 0456.26005
[16] Robert M.McLeod: The Generalized Riemann Integral, Carus Mathematical Mono-

graphs, vol. 20. Mathematical Association of America, Washington D.C., 1980.
Zbl 0486.26005

[17] P.Muldowney: A General Theory of Integration in Function Spaces. Longmans, Harlow,
1987. Zbl 0623.8008

Author’s address: Rudolf Výborný, Department of Mathematics, The University of
Queensland, Brisbane, Qld 4072, Australia, e-mail: rv@maths.uq.edu.au.

346

http://www.emis.de/MATH-item?1060.65001
http://www.emis.de/MATH-item?0968.2600
http://www.emis.de/MATH-item?0968.2600
http://www.emis.de/MATH-item?0661.26001
http://www.emis.de/MATH-item?0807.26004
http://www.emis.de/MATH-item?0807.26004
http://www.emis.de/MATH-item?0154.05001
http://www.emis.de/MATH-item?0172.39001
http://www.emis.de/MATH-item?0171.01804
http://www.emis.de/MATH-item?0668.28001
http://www.emis.de/MATH-item?0094.05804
http://www.emis.de/MATH-item?0441.28001
http://www.emis.de/MATH-item?0941.26003
http://www.emis.de/MATH-item?0699.26004
http://www.emis.de/MATH-item?0456.26005
http://www.emis.de/MATH-item?0486.26005
http://www.emis.de/MATH-item?0623.8008

