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1. Introduction

A linear and continuous operator between Banach spaces is said to be absolutely

summing if it maps unconditionally convergent series into absolutely convergent se-

ries. Moreover, it improves properties of stochastic processes. Indeed, N.Ghoussoub

in [7] proved that an operator is absolutely summing if and only if it maps amarts

(asymptotic martingales) into uniform amarts. In this paper we go a bit further

studying the composition of stochastic processes consisting of weakly measurable

functions with absolutely summing operators. In particular, we consider stochastic

processes of McShane and Pettis integrable functions. Both these processes gener-

alize the more familiar notion of Bochner stochastic processes. For functions taking

values in an infinite dimensional Banach space the Bochner integral and the Pettis

integral are the most known generalizations of the Lebesgue integral. The family

of all McShane integrable functions is strictly contained between the family of all
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Bochner integrable functions and the family of all Pettis integrable functions. Even

if the Bochner integral is the natural candidate to generalize the Lebesgue integral

in Banach spaces, elementary classical examples show that it is highly restrictive. In

fact it integrates few functions, for example the function

f : [0, 1] → `∞[0, 1]

defined as

f(t) = χ[0,t],

is not strongly measurable. Even for strongly measurable functions the Bochner

integral does not necessarily exist. Indeed, if E is an infinite dimensional Banach

space, by the Dvoretzky-Rogers Theorem there exists an unconditionally convergent

series
∞
∑

n=1
xn that is not absolutely convergent. If (An)n is a countable measurable

partition of a probability space (Ω, P ) such that P (An) > 0 for each n ∈
�
, the

function

X =

∞
∑

n=1

xn

P (An)
χAn

is strongly measurable but not Bochner integrable.

Actually little is known about adapted sequences of Pettis integrable functions (see

for example [5], [9], [12] and [17]) or about adapted sequences of McShane integrable

functions (see [11]). Indeed, the conditional expectation of Pettis integrable functions

does not necessarily exist. Moreover, the class of all Pettis integrable functions,

endowed with the Pettis norm, is complete if and only if the Banach space is of finite

dimension.

In Proposition 1 we extend to amarts of McShane integrable functions a charac-

terization known in the case of Bochner integrable stochastic processes. We use this

result and a recent characterization of absolutely summing operators (see [10] and

[14]) to characterize absolutely summing operators by means of amarts of McShane

integrable functions (Theorem 1). In Examples 1 and 2 we give applications of this

result.

2. Definitions and a preliminary result

Let E and F be two Banach spaces with a norm ‖ · ‖E and ‖ · ‖F respectively; E
∗

and B(E∗) denote respectively the dual of E and its unit ball.

Throughout, (Ω,F , P ) is a probability space and (Fn)n∈ � is a family of sub-σ-
algebras of F such that Fm ⊂ Fn ifm < n. A stopping time is a map τ : Ω →

�
∪{∞}

such that, for each n ∈
�
, {τ 6 n} := {ω ∈ Ω: τ(ω) 6 n} ∈ Fn. We denote by T
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the collection of all simple stopping times (i.e. taking finitely many values and not

taking the value ∞). Then T is a directed set filtering to the right.

Let F0 be a sub-σ-algebra of F , then a function X : Ω → E is called weakly F0

-measurable if the function fX is F0-measurable for every f ∈ E∗. A weakly F-

measurable function is called weakly measurable. A function X : Ω → E is said to be

Pettis integrable if fX is Lebesgue integrable on Ω for each f ∈ E∗ and there exists

a set function ν : F → E such that

fν(A) =

∫

A

fX

for all f ∈ E∗ and A ∈ F . In this case we write ν(A) = (P )
∫

A
X and we call ν(Ω)

the Pettis integral of X over Ω and ν is the indefinite Pettis integral of X .

The space of all Pettis integrable functions X : Ω → E is denoted by P(E). The

Pettis norm of a Pettis integrable functions is

|X |P = sup

{
∫

Ω

|fX | : f ∈ B(E∗)

}

.

It is well known that

sup

{
∥

∥

∥

∥

(P )

∫

A

X

∥

∥

∥

∥

: A ∈ F

}

defines an equivalent norm in P(E).

It should be noted that, in general, if X is only Pettis integrable and not bounded

enough, then even in the space E = `2(
�
), there is no Pettis conditional expectation

of X with respect to a sub-σ-algebra of F (see [16], Example 6-4-1).

We say that (Xn,Fn)n is a stochastic process of Pettis integrable functions if, for

each n ∈
�
, Xn : Ω → E is Pettis integrable and weakly Fn-measurable.

Let (Ω,A,F , P ) be a probability space which is Radon and outer regular, where A

denotes the topology in Ω. A McShane partition of Ω is a set {(Si, ωi), i = 1, 2 . . .}

where (Si)i is a disjoint family of measurable sets of finite measure, P
(

Ω\
∞
⋃

i=1

Si

)

= 0

and ωi ∈ Ω for each i = 1, 2, . . .. A gauge on Ω is a function ∆: Ω → A such that

ω ∈ ∆(ω) for each ω ∈ Ω. A McShane partition {(Si, ωi), i = 1, 2, . . .} is subordinate

to a gauge ∆ if Si ⊂ ∆(ωi) for i = 1, 2, . . ..

A function f : Ω → E is said to be McShane integrable on G, when G is a sub-

σ-algebra of F (see [6] Definition 1A) (briefly McS-integrable on G), with McShane

integral z ∈ E, if for each ε > 0 there exists a gauge ∆: Ω → A such that

lim sup
n

∥

∥

∥

∥

n
∑

i=1

P (Si)f(ωi) − z

∥

∥

∥

∥

< ε
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for each McShane partition {(Si, ωi) : i = 1, 2, . . .} subordinate to ∆ with Si ∈ G. In

case G = F we simply say that X is McS-integrable.

It is known that if f : Ω → E isMcS-integrable, then its indefinite Pettis integral is

totally bounded (see [6], Corollary 3E), hence it is norm relatively compact. Denote

by McS(E) the set of all McS-integrable functions X : Ω → E endowed with the

norm

|X |McS = sup

{
∫

Ω

|fX | : f ∈ B(E∗)

}

.

We know that it is equivalent to the norm ([15])

sup

{
∥

∥

∥

∥

(McS)

∫

A

X

∥

∥

∥

∥

: A ∈ F

}

.

If G is a sub-σ-algebra of F , if X is McS-integrable and if Y is McS-integrable on G,

then Y is called the McShane conditional expectation of X with respect to G if for

every A ∈ G,

(McS)

∫

A

Y = (McS)

∫

A

X.

We observe that the conditional expectation of a McS-integrable function does not

always exist. Indeed, the same is true for strongly measurable Pettis integrable

functions and then for McShane integrable functions (see [8], Theorem 17).

We say that (Xn,Fn)n is a stochastic process of McS-integrable functions, if for

each n ∈
�
, Xn is McS-integrable and weakly measurable with respect to Fn. We

recall that (Xn,Fn)n is a stochastic process if, for each n ∈
�
, Xn is Bochner

integrable and Fn-measurable. For τ ∈ T , let

Fτ = {A ∈ F : A ∩ {τ = n} ∈ Fn, for each n ∈
�
}

and

Xτ =

max τ
∑

n=min τ

Xnχ{τ=n}.

Definition 1. A stochastic process (Xn,Fn)n of McS-integrable functions is

called an amart if the net ((McS)
∫

Ω
Xτ )τ∈T converges in E, that is there is y ∈ E

such that for each ε > 0 there is σ0 ∈ T such that if τ ∈ T and τ > σ0 then

∥

∥

∥

∥

(McS)

∫

Ω

Xτ − y

∥

∥

∥

∥

E

< ε.

It is worth recalling at this point that the previous definition extends to stochastic

processes of McS-integrable functions the more familiar notion of amart (see [1])

known for stochastic processes.
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In the sequel we shall make use of the following facts and proposition.

For each τ ∈ T define µτ (A) = (McS)
∫

A
Xτ for A ∈ Fτ .

The following proposition extends to amarts of McShane integrable functions a

result known for Bochner integrable functions.

Proposition 1. Let (Xn,Fn)n be an amart. Then the family (µτ (A))τ converges

to a limit µ∞(A) for each A ∈ F∞ =
⋃

τ∈T

Fτ =
⋃

n∈ �
Fn, and the convergence is

uniform on F∞ in the sense that for each ε > 0 there is σ0(ε) ∈ T such that if τ ∈ T

and τ > σ0 then

‖µτ (A) − µ∞(A)‖E < ε for all A ∈ Fτ .

�������	�
. Let (Xn,Fn)n be an amart. Since the net

(

(McS)
∫

Xτ

)

τ∈T
converges,

for any fixed ε > 0 there is σ0(ε) ∈ T such that if τ > σ > σ0(ε) ∈ T then

(1)

∥

∥

∥

∥

(McS)

∫

Xτ − (McS)

∫

Xσ

∥

∥

∥

∥

E

<
ε

2
.

Fix now τ > σ > σ0(ε). Let A ∈ Fσ . Choose a natural number n ∈
�
such that

n > τ > σ and define

τ1 =

{

τ on A,

n on Ω \ A,
σ1 =

{

σ on A,

n on Ω \ A.

Then τ1 and σ1 are stopping times and τ1 > σ1 > σ0. Moreover,

µτ (A) − µσ(A) = (McS)

∫

A

Xτ − (McS)

∫

A

Xσ = (McS)

∫

Xτ1
− (McS)

∫

Xσ1
,

hence by (1) we get

(2) ‖µτ (A) − µσ(A)‖E <
ε

2

for all A ∈ Fσ . Let A ∈ F∞, then A ∈ Fm for some m ∈
�
. Now µτ (A) is defined for

all τ > m and (µτ (A))τ>m is Cauchy in E. Indeed, if σ > σ0(ε)∨m and τ > σ0(ε)∨m

by (2) we obtain

‖µτ (A) − µσ(A)‖E 6 ‖µτ (A) − µσ0(ε)∨mσ(A)‖E + ‖µσ(A) − µσ0(ε)∨m(A)‖E < ε.

Hence the limit µ∞(A) exists in E for all A ∈ F∞. Thus we can take the limit in

(2) as required. �

383



We recall that a stochastic process (Xn,Fn)n is a uniform amart (see [1]) if for

each ε > 0 there is n0 ∈
�
such that if σ ∈ T and σ > n0 then

Var(µσ − µ∞|Fσ) 6 ε,

where the symbol Var(µ) denotes the variation of the measure µ, that is

Var(µ) = sup
n

∑

i=1

‖µ(Ei)‖,

where the supremum is taken over the finite partitions {E1, . . . , En} of Ω.

3. Composition of absolutely summing operators with weakly

measurable functions

In this section we consider the composition of operators with weakly measurable

functions. As usual, bounded linear maps between Banach spaces are referred to as

operators. The symbol L(E, F ) denotes the space of operators from E to F . Let

u ∈ L(E, F ). Define U fromMcS(E) to McS(F ) (or respectively from B(E) to B(F ),

where the symbols B(E) and B(F ) denote respectively the family of all Bochner

integrable functions taking values in E or F ) by

(UX)(ω) = u(X(ω)).

Then u “lifts” to an operator U ∈ L(McS(E), McS(F )) (or to an operator U ∈

L(B(E),B(F ))) (see [6] (or resp. [3])).

If µ : Ω → E is an E-valued additive set function defined on an algebra G of

a subset of Ω, then Uµ defined as Uµ(A) = U(µ(A)) is an F -valued additive set

function defined on the algebra G. Recall that the semivariation of µ is defined as

|µ| = sup {Var f(µ) : f ∈ B(E∗)} .

It is well known that

|µ| 6 4 sup {‖µ(A)‖ : A ∈ G} .

An operator u ∈ L(E, F ) is said to be absolutely summing if there is a constant c > 0

such that, for every choice of an integer n and vectors {xi}
n
i=1 in E, we have

(3)
n

∑

i=1

‖u(xi)‖F 6 c sup
f∈B(E∗)

n
∑

i=1

|f(xi)|.

The least c for which inequality (3) always holds is denoted by π(u).
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Proposition 2. Let u : E → F be an absolutely summing operator. Then there

is a constant C such that for every McShane integrable function X : Ω → E it follows

that ∫

‖U(X)‖ 6 C|X |McS.

�������	�
. By [14] Theorem 3.13 the function UX : Ω → F is Bochner integrable.

We want to prove that the operator U from McS(E) to B(F ) is continuous. Let

s =
n
∑

i=1

xiχAi
be a simple function, then

‖Us‖B(F ) =

∫

Ω

‖(Us)(ω)‖F =

∫

Ω

‖u(s(ω))‖F(4)

=

∫

Ω

∥

∥

∥

∥

u

( n
∑

i=1

xiχAi
(ω)

)
∥

∥

∥

∥

F

=

∫

Ω

∥

∥

∥

∥

n
∑

i=1

u(xi)χAi
(ω)

∥

∥

∥

∥

F

.

Applying the disjointness of Ai’s and the linearity of the integral we get

(5)

∫

Ω

∥

∥

∥

∥

n
∑

i=1

u(xi)χAi
(ω)

∥

∥

∥

∥

F

=

n
∑

i=1

∫

Ai

‖u(xi)‖F

=

n
∑

i=1

‖u(xi)‖F P (Ai) =

n
∑

i=1

‖u(P (Ai)xi)‖F

6 π(u) sup

{ n
∑

i=1

|f(P (Ai)xi)| : f ∈ B(E∗)

}

= π(u)|s|McS(E)

where the last inequality follows from the definition of the McS-norm. Thus by (4)

and (5), we get

(6) ‖Us‖B(F ) 6 π(u)|s|McS(E)

for every simple function. If X ∈ McS(E), then its indefinite Pettis integral is

relatively compact (see [6] Corollary 3E). Therefore simple functions are dense in

McS(E) ([13] Theorem 9.1) with the McS(E)-norm. Let (tn) be a sequence of simple

functions converging to X in the McS(E)-norm. Then it is Cauchy in the McS(E)-

norm, moreover, there is a subsequence (sn) of (tn) such that for each f ∈ E∗

lim
n→∞

f(sn(ω)) = f(X(ω))

for all ω /∈ Nf , P (Nf ) = 0. By (6) and the linearity of U we get

‖Usn − Usm‖B(F ) 6 π(u)|sn − sm|McS(X).
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Therefore the sequence (Usn) is Cauchy in B(F ). Since B(F ) is complete there is

a function Y ∈ B(F ) such that (Usn) converges to Y in B(F ). Without loss of

generality we can assume that the convergence is also a.e. So there is a set N with

P (N) = 0 such that for each g ∈ F ∗ and ω /∈ N

(7) lim
n→∞

g((Usn)(ω)) = g(Y (ω)).

Let u∗ : F ∗ → E∗ be the adjoint operator of u. Since it is weak∗-continuous we

obtain

(8) lim
n→∞

〈(Usn)(ω), g〉 = lim
n→∞

〈u(sn)(ω), g〉

= lim
n→∞

〈sn(ω), u∗g〉 = 〈X(ω), u∗g〉

= 〈u(X(ω)), g〉 = 〈(UX)(ω), g〉

a.e. on Ω. From (7) and (8) we get that g(Y (ω)) = g((UX)(ω)) a.e. on Ω. Since the

functions UX and Y are strongly measurable, Y (ω) = (UX)(ω) a.e. So the sequence

(Usn) converges to (UX) a.e. and in B(F ). Furthermore, we have

‖UX‖B(F ) = lim
n→∞

‖Usn‖B(F ) 6 π(u) lim
n→∞

|sn|McS(E) = π(u)|X |McS(E).

Therefore U is continuous and there is a constant C such that

∫

‖U(X)‖ 6 C|X |McS,

as required. �

4. Main result

Our main result is

Theorem 1. Let u ∈ L(E, F ). Then u is absolutely summing if and only if U

maps every E-valued amart of McShane integrable functions to an F -valued uniform

amart.

�������	�
. Let X : Ω → E be a McShane integrable function, then

µ(A) = (McS)

∫

A

X
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is an E-valued additive set function. If u is absolutely summing then UX is Bochner

integrable by Proposition 2 and there is a constant C such that

(9) Var(U(µ)) =

∫

‖U(X)‖ 6 C|X |McS = C|µ|.

Let (Xn,Fn)n be an E-valued amart of McShane integrable functions and ε > 0.

According to Proposition 1 there is m0 ∈
�
such that

(10) |µσ − µ∞|Fσ| <
ε

C

for all σ ∈ T , σ > m0. By (9) and (10) we get

Var(U(µσ − µ∞|Fσ)) 6 C|µσ − µ∞|Fσ| < ε.

Therefore (UXn)n is a uniform amart as required.

To prove the converse assume that the operator U is not absolutely summing.

Then there is a series
∞
∑

n=1
xn in E which is unconditionally summable, but such that

∞
∑

n=1
‖Uxn‖ = ∞. We can find an increasing sequence of integers (nk)k such that

nk+1
∑

n=nk+1

‖Uxn‖ > 1.

Multiplying some xn’s by coefficients smaller than 1, we can assume, without loss of

generality, that
nk+1
∑

n=nk+1

‖Uxn‖ = 1.

For every k ∈
�
, divide the interval [0, 1] into (nk+1−nk) subintervals Ak,n of length

‖Uxn‖. Let (Ω,F , P ) be the interval [0, 1] with the Lebesgue measure. We define a

sequence of functions Xk : Ω → E as

(11) Xk(ω) =

nk+1
∑

n=nk+1

xn

‖Uxn‖
χAk,n

.

As, for each k, Xk is a countably valued function, it is strongly measurable. Since

nk+1
∑

n=nk+1

xn

‖Uxn‖
P (Ak,n) =

nk+1
∑

n=nk+1

xn
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is unconditionally convergent, each Xk is McShane integrable (see [8], Theorem 15).

For every k ∈
�
, Fk will be the σ-algebra σ(X1, X2, . . . , Xk). Then the sequence

(Xk)k is adapted to the the family (Fk)k . To prove that (Xk)k is an amart, let N ∈
�

and let σ > N be a stopping time. For each k > N , let Bk,n = Ak,n ∩{σ = k}. Then

it follows that

(12) (McS)

∫

Xσ =
∑

k>N

(McS)

∫

{σ=k}

Xk =
∑

k>N

nk+1
∑

n=nk+1

P (Bk,n)
xn

‖Uxn‖
.

Since Bk,n ⊆ Ak,n, P (Bk,n)/‖Uxn‖ = αk,n 6 1. Therefore, since
∞
∑

i=1

xn is uncondi-

tionally summable, by (12) we get that

(McS)

∫

Xσ =
∑

k>N

nk+1
∑

n=nk+1

αk,nxn

converges to zero. Since each Xn is strongly measurable, hence (UXn)n is an F -

valued strongly measurable amart which is not a uniform amart. Indeed, one should

have lim
σ

∫

‖UXσ‖ = 0. By the real-valued amart convergence theorem (see [4]

Theorem 1.2.5), (‖UXk‖)k must converge to zero, but for each k > N and for each

ω ∈ Ω we have ‖UXk(ω)‖F = 1. Therefore the assertion holds true. �

The previous theorem extends to amarts of McShane integrable functions a result

due to Ghoussoub (see [7] Theorem 1) in the case of Bochner integrable amarts.

Corollary 1. Let u ∈ L(E, F ). Then u is absolutely summing if and only if U

maps every E-valued amart of strongly measurable Pettis integrable functions to an

F -valued uniform amart.

�������	�
. By [6, Corollary 4C], the class of strongly mesurable Pettis integrable

functions is included in that of McShane integrable ones. Therefore the assertion

follows from Theorem 1. �

The following examples are applications of Theorem 1.


 �
���������
1. Let E = `1 and let xn = (xn

1 , xn
2 , . . .) be such that

∞
∑

n=1
xn is a

series in `1 converging unconditionally but not absolutely. We can find an increasing

sequence of integers (nk)k such that

nk+1
∑

n=nk+1

‖xn‖ > 1.
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Multiplying some xn’s by coefficients smaller than 1, we can assume, without loss of

generality, that
nk+1
∑

n=nk+1

‖xn‖ = 1.

For every k ∈
�
, divide the interval [0, 1] into (nk+1−nk) subintervals Ak,n of length

‖xn‖. Let (Ω,F , P ) be the interval [0, 1] with the Lebesgue measure. We define a

sequence of functions Xk : Ω → `1 as

(13) Xk(ω) =

nk+1
∑

n=nk+1

xn

‖xn‖
χAk,n

.

As, for each k, Xk is a countably valued function, it is strongly measurable. Since

nk+1
∑

n=nk+1

xn

‖xn‖
P (Ak,n) =

nk+1
∑

n=nk+1

xn

is unconditionally convergent, each Xk is McShane integrable (see [8], Theorem 15).

For every k ∈
�
, let Fk be the σ-algebra σ(X1, X2, . . . , Xk). Then the sequence (Xk)k

is adapted to the the family (Fk)k. To prove that (Xk)k is an amart, let N ∈
�
and

let σ > N be a stopping time. For each k > N , let Bk,n = Ak,n ∩ {σ = k}. Then it

follows that

(14) (McS)

∫

Xσ =
∑

k>N

(McS)

∫

{σ=k}

Xk =
∑

k>N

nk+1
∑

n=nk+1

P (Bk,n)
xn

‖xn‖
.

Since Bk,n ⊆ Ak,n, we have P (Bk,n)/‖xn‖ = αk,n 6 1. Therefore, since
∞
∑

n=1
xn is

unconditionally summable, by (14) we get that

(McS)

∫

Xσ =
∑

k>N

nk+1
∑

n=nk+1

αk,nxn

converges to zero. Since
∞
∑

n=1
xn is not absolutely convergent, f is not Bochner in-

tegrable (see [2] Theorem 2). If i : `1 ↪→ `2 is the canonical immersion then i is

an absolutely summing operator. Therefore applying Theorem 1 we get that the

composition

i ◦ Xk : [0, 1] → `2

is a uniform amart.
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 �
���������
2. Let E = `1 and let (en)n∈ � be the canonical basis in `1. Let

(Yn)n∈ � be a sequence of independent real integrable functions such that Yn(Ω) =

{−1, +1} with P (Yn = −1) = P (Yn = 1) = 1
2 . Define

Xn =
1

n

n
∑

i=1

Yiei.

For each f ∈ E∗, by the strong law of large numbers, we get that lim
n→∞

f(Xn) = 0

a.e. and thus also lim
τ

f(Xτ ) = 0 a.e. Moreover, ‖Xn(ω)‖ = 1 for each n ∈
�
,

therefore lim
τ

∫

Ω
f(Xτ ) = 0. Thus for every f ∈ E∗, (f(Xn))n∈ � is a real valued

amart. By the Schur Theorem we get that lim
τ

∫

Ω Xτ exists in `1, therefore (Xn)n∈ �
is an `1-amart. As in the previous example if i : `1 ↪→ `2 is the canonical immersion

then i is an absolutely summing operator. Thus applying once again Theorem 1 we

get that the composition

i ◦ Xn : [0, 1] → `2

is a uniform amart.

References

[1] A.Bellow: Uniform amarts: a class of asymptotic martingales for which strong almost
sure convergence obtains. Z. Wahrscheinlichkeitstheor. Verw. Geb. 41 (1978), 177–191.

Zbl 0391.60005
[2] J.K.Brooks: Representations of weak and strong integrals in Banach spaces. Proc. Nat.
Acad. Sci. U.S.A. 63 (1969), 266–279. Zbl 0186.20302

[3] N.Dunford, J. T. Schwartz: Linear Operators. Part I, Interscience, New York, 1958.
Zbl 0635.47001

[4] G.A.Edgar, L. Sucheston: Stopping Times and Directed Sets. Cambridge University
Press, New York, 1992. Zbl 0779.60032

[5] L.Egghe: Convergence of adapted sequences of Pettis-integrable functions. Pacific J.
Math. 114 (1984), 345–366. Zbl 0514.46028

[6] D.H. Fremlin: The generalized McShane integral. Illinois J. Math. 39 (1995), 39–67.
Zbl 0810.28006

[7] N.Ghoussoub: Summability and vector amarts. J. Multivariate Anal. 9 (1979), 173–178.
Zbl 0407.60043

[8] R.A.Gordon: The McShane integral of Banach-valued functions. Illinois J. Math. 34
(1990), 557–567. Zbl 0685.28003

[9] Luu Dinh Quang: Convergence of Banach-space-valued martingale-like sequences of Pet-
tis-integrable functions. Bull. Polish Acad. Sci. Math. 45 (1997), 233–245.

Zbl 0892.60009
[10] V.Marraffa: A characterization of absolutely summing operators by means of McShane

integrable functions. J. Math. Anal. Appl. 293/1 (2004), 71–78. Zbl pre02082129
[11] V.Marraffa: Stochastic processes of vector valued Pettis and McShane integrable func-

tions. Folia Mathematica 11 (2005); in press.
[12] K.Musial: Martingales of Pettis integrable functions. Lect. Notes Math., Springer 794

(1980), 324–339. Zbl 0433.28010

390

http://www.emis.de/MATH-item?0391.60005
http://www.emis.de/MATH-item?0186.20302
http://www.emis.de/MATH-item?0635.47001
http://www.emis.de/MATH-item?0779.60032
http://www.emis.de/MATH-item?0514.46028
http://www.emis.de/MATH-item?0810.28006
http://www.emis.de/MATH-item?0407.60043
http://www.emis.de/MATH-item?0685.28003
http://www.emis.de/MATH-item?0892.60009
http://www.emis.de/MATH-item?pre02082129
http://www.emis.de/MATH-item?0433.28010


[13] K.Musial: Topics in the theory of Pettis integration. Rend. Istit. Mat. Univ. Trieste 23
(1991), 177–262. Zbl 0798.46042

[14] J.Rodriguez: Absolutely summig operators and integration of vector-valued functions.
J. Math. Anal. Appl. 316 (2006), 579–600.

[15] C.Swartz: Beppo Levi’s theorem for vector valued McShane integral and applications.
Bull. Belg. Math. Soc. 4 (1997), 589–599. Zbl 1038.46505

[16] M.Talagrand: Pettis Integral and Measure Theory. vol. 51, Memoirs A.M.S., 1984.
Zbl 0582.46049

[17] J. J.Uhl, Jr.: Martingales of strongly measurable Pettis integrable functions. Trans.
Amer. Math. Soc. 167 (1972), 369–378. Zbl 0249.60025

Author’s address: V.Marraffa, Department of Mathematics, University of Palermo, Via
Archirafi 34, 90123 Palermo, Italy, e-mail: marraffa@math.unipa.it.

391

http://www.emis.de/MATH-item?0798.46042
http://www.emis.de/MATH-item?1038.46505
http://www.emis.de/MATH-item?0582.46049
http://www.emis.de/MATH-item?0249.60025

