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JONSSON’S LEMMA FOR NORMALLY PRESENTED VARIETIES

IvaN CHAJDA, Olomouc

(Received May 28, 1996)

Varieties presented by normal identities were treated in [1]. Let us recall the basic
concepts. Let 7 be a similarity type and {z1,z2,...} a set of variables. For an n-ary
term p(z1,...,T,) of type 7 we denote by varp = {x1,...,z,} the set of all variables
occuring in p. For n-ary terms p, q of type 7 the identity

(T, Zn) = q(T1, ..., Tn)

is said to be mormal if it is either trivial, i.e. x; = =1, or p ¢ varp and ¢ ¢ vargq,
i.e. neither p nor ¢ is a single variable. A variety ¥ of type 7 is normally presented
if Id 7" contains only normal identities.

If ¥ is a variety of type 7, denote by N(¥) the variety satisfying all normal
identities of ¥. Hence, ¥ is a subvariety of N(¥) and if ¥ # N(¥') then N(¥)
covers ¥ in the lattice of all varieties of type T, see [3].

Since every congruence identity is characterized by a Mal’tsev condition (see [4])
and because every Mal’tsev condition contains an identity which is not normal, we
obtain the following

Observation. For every variety ¥, the variety N(¥) satisfies no congruence
identity.

In particular, N(¥) is never a congruence distributive variety. Despite of this
fact, N(7) satisfies the assertion of Jénsson’s Lemma provided ¥ is congruence
distributive:

Theorem. Let ¥ be a congruence distributive variety of type T and let N(¥') be
generated by a class J# of algebras of type 7. Then Si(N(¥)) = HSPy(X¥') and,
therefore, N(¥) = IPsHSPy (X).
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Proof. Let ¥ be a congruence distributive variety of type 7. Denote by & =
({0,1}, F) an algebra of type 7 such that f(z1,...,z,) = 0 for every z1,...,z, of
{0,1}. &£ is the so called constant algebra in the sense of [1]. As was pointed out in
Theorem 3 of [1], Si(N(¥) = Si(¥) U B. By Jénsson’s Lemma, we have

Si(N(¥)) = HSPy (%) U B.

If Z ¢ HSPy () then # ¢ HSP (%) and thus, by [1], HSP(.%") is not normally
presented, a contradiction with N(¥) = HSP(¢'). Hence # ¢ HSPy(¥') and
Si(N(¥)) = HSPy (X). O
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