JÓNSSON'S LEMMA FOR NORMALLY PRESENTED VARIETIES

IVAN CHAJDA, Olomouc

(Received May 28, 1996)

Varieties presented by normal identities were treated in [1]. Let us recall the basic concepts. Let τ be a similarity type and $\{x_1, x_2, \ldots\}$ a set of variables. For an n-ary term $p(x_1, \ldots, x_n)$ of type τ we denote by var $p = \{x_1, \ldots, x_n\}$ the set of all variables occurring in p. For n-ary terms p, q of type τ the identity

$$p(x_1,\ldots,x_n)=q(x_1,\ldots,x_n)$$

is said to be *normal* if it is either trivial, i.e. $x_1 = x_1$, or $p \notin \operatorname{var} p$ and $q \notin \operatorname{var} q$, i.e. neither p nor q is a single variable. A variety $\mathscr V$ of type τ is *normally presented* if $\operatorname{Id} \mathscr V$ contains only normal identities.

If $\mathscr V$ is a variety of type τ , denote by $N(\mathscr V)$ the variety satisfying all normal identities of $\mathscr V$. Hence, $\mathscr V$ is a subvariety of $N(\mathscr V)$ and if $\mathscr V\neq N(\mathscr V)$ then $N(\mathscr V)$ covers $\mathscr V$ in the lattice of all varieties of type τ , see [3].

Since every congruence identity is characterized by a Mal'tsev condition (see [4]) and because every Mal'tsev condition contains an identity which is not normal, we obtain the following

Observation. For every variety \mathcal{V} , the variety $N(\mathcal{V})$ satisfies no congruence identity.

In particular, $N(\mathscr{V})$ is never a congruence distributive variety. Despite of this fact, $N(\mathscr{V})$ satisfies the assertion of Jónsson's Lemma provided \mathscr{V} is congruence distributive:

Theorem. Let $\mathscr V$ be a congruence distributive variety of type τ and let $N(\mathscr V)$ be generated by a class $\mathscr K$ of algebras of type τ . Then $Si(N(\mathscr V)) = \mathbf{HSP_U}(\mathscr K)$ and, therefore, $N(\mathscr V) = \mathbf{IP_SHSP_U}(\mathscr K)$.

Proof. Let $\mathscr V$ be a congruence distributive variety of type τ . Denote by $\mathscr B=(\{0,1\},F)$ an algebra of type τ such that $f(x_1,\ldots,x_n)=0$ for every x_1,\ldots,x_n of $\{0,1\}$. $\mathscr B$ is the so called *constant algebra* in the sense of [1]. As was pointed out in Theorem 3 of [1], $Si(N(\mathscr V)=Si(\mathscr V)\cup\mathscr B$. By Jónsson's Lemma, we have

$$Si(N(\mathscr{V})) = \mathbf{HSP_U}(\mathscr{K}) \cup \mathscr{B}.$$

If $\mathscr{B} \notin \mathbf{HSP_U}(\mathscr{K})$ then $\mathscr{B} \notin \mathbf{HSP}(\mathscr{K})$ and thus, by [1], $\mathbf{HSP}(\mathscr{K})$ is not normally presented, a contradiction with $N(\mathscr{V}) = \mathbf{HSP}(\mathscr{K})$. Hence $\mathscr{B} \in \mathbf{HSP_U}(\mathscr{K})$ and $Si(N(\mathscr{V})) = \mathbf{HSP_U}(\mathscr{K})$.

References

- [1] Chajda, I.: Normally presented varieties. Algebra Univ. 34 (1995), 327-335.
- [2] Jónsson, B.: Algebras whose congruence lattices are distributive. Math. Scand. 21 (1967), 110–121.
- [3] Melnik, I.I.: Nilpotent shifts of manifolds. Math. Notes 14 (1978), 692-696.
- [4] Taylor, W.: Characterizing Mal'tsev conditions. Algebra Univ. 3 (1973), 351-384.

Author's address: Ivan Chajda, Department of Algebra and Geometry, Palacký University Olomouc, Tomkova 40, 779 00 Olomouc, Czech Republic, e-mail: chajda@risc.upol.cz.