PAIRWISE FUZZY CONNECTEDNESS BETWEEN FUZZY SETS

S.S. THAKUR and ANNAMMA PHILIP, Jabalpur

(Received May 21, 1996)

Abstract. In this paper the concept of fuzzy connectedness between fuzzy sets [6] is generalized to fuzzy bitopological spaces and some of its properties are studied.

Keywords: fuzzy bitopological spaces, pairwise fuzzy connectedness, (i,j)-fuzzy clopen $MSC\ 1991$: 54A40

1. Preliminaries

Let X and Y be non-empty sets. A fuzzy set λ in X is a mapping from X to the unit interval [0,1]. The null fuzzy set 0 (resp. the whole fuzzy set 1) is the mapping from X to the unit interval [0,1] which takes the only value 0 (resp. 1) in that interval. The basic operations on fuzzy sets are defined as follows:

$$\bigcup_{\alpha \in \Lambda} \lambda_{\alpha}(x) = \sup_{\alpha \in \Lambda} \lambda_{\alpha}(x), \ \forall x \in X,$$
$$\bigcap_{\alpha \in \Lambda} \lambda_{\alpha}(x) = \inf_{\alpha \in \Lambda} \lambda_{\alpha}(x), \ \forall x \in X,$$
$$1 \setminus \lambda(x) = 1 - \lambda(x), \ \forall x \in X.$$

A fuzzy topology [2] on X is a family τ of fuzzy sets in X which satisfies the following conditions:

- (a) $0, 1 \in \tau$,
- (b) $\lambda, \mu \in \tau \Rightarrow \lambda \cap \mu \in \tau$,
- (c) for each $\alpha \in \Lambda$, $\lambda_{\alpha} \in \tau \Rightarrow \bigcup_{\alpha \in \Lambda} \lambda_{\alpha} \in \tau$.

The pair (X, τ) is called a fuzzy topological space and the members of τ are called fuzzy open sets. The complements of the fuzzy open sets are called fuzzy closed sets. The closure denoted by $cl(\lambda)$ (interior, denoted by $int(\lambda)$) of a fuzzy set λ of X is the

intersection (union) of all fuzzy closed supersets (fuzzy open subsets, respectively) of λ [2]. For a fuzzy set λ of a fuzzy topological space X, $1 - \operatorname{int}(\lambda) = \operatorname{cl}(1 - \lambda)$ and $1 - \operatorname{cl}(\lambda) = \operatorname{int}(1 - \lambda)$. A fuzzy set λ in X is said to be quasi-coincident [8] with a fuzzy set μ in X denoted by λ q μ if there exists a point $x \in X$ such that $\lambda(x) + \mu(x) > 1$. If λ and μ are two fuzzy sets of X, then $\lambda \leqslant \mu$ if and only if λ and $\lambda \in \mathbb{C}$ are not quasi-coincident. A fuzzy topological space $\lambda \in \mathbb{C}$ is said to be fuzzy connected [3] if there is no proper fuzzy set in λ which is both fuzzy open and fuzzy closed. A fuzzy topological space λ is said to be fuzzy connected [6] between its subsets λ and λ if and only if there is no fuzzy closed fuzzy open set λ in λ such that λ if and λ if and only if there is no fuzzy closed fuzzy open set λ in λ such that λ if and λ if and λ if and λ if and only if there is no fuzzy closed fuzzy open set λ in λ such that λ if and λ if λ if and λ if λ if and λ if λ if and λ if any λ

A system (X, τ_1, τ_2) consisting of a set X with two topologies τ_1 and τ_2 on X is called a fuzzy bitopological space [5]. A fuzzy bitopological space (X, τ_1, τ_2) is said to be pairwise fuzzy connected [8] if it has no proper fuzzy set which is both τ_i -fuzzy open and τ_j -fuzzy closed, $i, j = 1, 2, i \neq j$. The purpose of this paper is to introduce and study the concept of pairwise fuzzy connectedness between fuzzy sets in fuzzy bitopological spaces.

Throughout this paper i, j = 1, 2 where $i \neq j$. If P is any fuzzy topological property then τ_i -P and τ_j -P denote the property P with respect to the fuzzy topology τ_i and τ_j , respectively and χ_A denotes the characteristic function of a subset A of X.

2. Pairwise fuzzy connectedness between fuzzy sets

Definition 2.1. A fuzzy bitopological space (X, τ_1, τ_2) is said to be pairwise fuzzy connected between fuzzy sets λ and μ if there is no (i, j)-fuzzy clopen $(\tau_i$ -fuzzy closed and τ_j -fuzzy open) set δ in X such that $\lambda \leq \delta$ and $\neg(\delta \neq \mu)$.

Remark 2.1. Pairwise fuzzy connectedness between fuzzy sets λ and μ is not equal to the fuzzy connectedness of (X, τ_1) and (X, τ_2) between λ and μ .

Example 2.1. Let $X=\{a,b\}$ and let $\lambda,\ \mu,\ \nu_1$ and ν_2 be fuzzy sets on X defined as follows:

$$\begin{split} &\lambda(a)=0.2, \quad \lambda(b)=0.3, \\ &\mu(a)=0.5, \quad \mu(b)=0.4, \\ &\nu_1(a)=0.3, \quad \nu_1(b)=0.4, \\ &\nu_2(a)=0.7, \quad \nu_2(b)=0.6. \end{split}$$

Let $\tau_1 = \{0, \nu_1, 1\}$ and $\tau_2 = \{0, \nu_2, 1\}$ be fuzzy topologies on X. Then (X, τ_1) and (X, τ_2) are fuzzy connected between the fuzzy sets λ and μ but (X, τ_1, τ_2) is not pairwise fuzzy connected between λ and μ .

Example 2.2. Let $X = \{a, b\}$. Let fuzzy sets $\nu_1, \nu_2, \delta_1, \delta_2, \lambda$ and μ be defined as follows:

$$\begin{split} \nu_1(a) &= 0.5, \quad \nu_1(b) = 0.6, \\ \nu_2(a) &= 0.5, \quad \nu_2(b) = 0.7, \\ \delta_1(a) &= 0.5, \quad \delta_1(b) = 0.4, \\ \delta_2(a) &= 0.5, \quad \delta_2(b) = 0.3, \\ \lambda(a) &= 0.5, \quad \lambda(b) = 0.3, \\ \mu(a) &= 0.5, \quad \mu(b) = 0.2. \end{split}$$

Let $\tau_1 = \{0, \nu_1, \delta_1, 1\}$ and $\tau_2 = \{0, \nu_2, \delta_2, 1\}$ be fuzzy topologies on X. Then the fuzzy bitopological space (X, τ_1, τ_2) is pairwise fuzzy connected between λ and μ , but neither (X, τ_1) nor (X, τ_2) are fuzzy connected between λ and μ .

Theorem 2.1. A fuzzy bitopological space (X, τ_1, τ_2) is pairwise fuzzy connected between fuzzy sets λ and μ if and only if there is no (i, j)-fuzzy clopen set δ in X such that $\lambda \leq \delta \leq 1 - \mu$.

Theorem 2.2. If a fuzzy bitopological space (X, τ_1, τ_2) is pairwise fuzzy connected between fuzzy sets λ and μ then λ and μ are non-empty.

Theorem 2.3. If a fuzzy bitopological space (X, τ_1, τ_2) is pairwise fuzzy connected between fuzzy sets λ and μ and if $\lambda \leq \lambda_1$ and $\mu \leq \mu_1$ then (X, τ_1, τ_2) is pairwise fuzzy connected between λ_1 and μ_1 .

Proof. Suppose the fuzzy bitopological space (X, τ_1, τ_2) is not pairwise fuzzy connected between the fuzzy sets λ_1 and μ_1 . Then there is an (i, j)-fuzzy clopen set δ in X such that $\lambda_1 \leq \delta$ and $\neg(\delta \neq \mu_1)$. Clearly $\lambda \leq \delta$. Now we claim that $\neg(\delta \neq \mu)$. If $(\delta \neq \mu)$ then there exists a point $x \in X$ such that $\delta(x) + \mu(x) > 1$. Therefore $\delta(x) + \mu_1(x) > \delta(x) + \mu(x) > 1$ and $\delta \neq \mu_1$, a contradiction. Consequently, (X, τ_1, τ_2) is not pairwise fuzzy connected between λ and μ .

Theorem 2.4. A fuzzy bitopological space (X, τ_1, τ_2) is pairwise fuzzy connected between λ and μ if and only if it is pairwise fuzzy connected between τ_i -cl (λ) and τ_j -cl (μ) .

Proof. Necessity: It follows by using Theorem (2.3).

Sufficiency: Suppose the fuzzy bitopological space (X, τ_1, τ_2) is not pairwise fuzzy connected between λ and μ . Then there is an (i, j)-fuzzy clopen set δ in X such that $\lambda \leq \delta$ and $\neg(\delta \neq \mu)$. Since $\lambda \leq \delta$, $\tau_{i^-} \operatorname{cl}(\lambda) \leq \tau_{i^-} \operatorname{cl}(\delta) < \delta$ because δ is τ_{i^-} -fuzzy closed. Now,

$$\neg(\delta \neq \mu) \Rightarrow \delta \leqslant 1 - \mu
\Rightarrow \delta \leqslant \tau_{j} \cdot \operatorname{int}(1 - \mu)
\Rightarrow \delta \leqslant 1 - \tau_{j} \cdot \operatorname{cl}(\mu)
\Rightarrow \neg(\delta \neq \tau_{j} \cdot \operatorname{cl}(\mu)).$$

Hence X is not pairwise fuzzy connected between $\tau_{i^-} \operatorname{cl}(\lambda)$ and $\tau_{j^-} \operatorname{cl}(\mu)$, a contradiction.

Theorem 2.5. Let (X, τ_1, τ_2) be a fuzzy bitopological space and let λ and μ be two fuzzy sets in X. If $\lambda \neq \mu$ then (X, τ_1, τ_2) is pairwise fuzzy connected between λ and μ .

Proof. If δ is any (i, j)-fuzzy clopen set in X such that $\lambda \leq \delta$ then $\lambda \neq \mu \Rightarrow \delta \neq \mu$.

Remark 2.2. The converse of Theorem (2.5) may not be true as is shown by the next example.

Example 2.3. Let $X = \{a, b\}$ and let the fuzzy sets λ , μ , δ_1 and δ_2 be defined as follows:

$$\lambda(a) = 0.5, \quad \lambda(b) = 0.4,$$

 $\mu(a) = 0.3, \quad \mu(b) = 0.5,$
 $\delta_1(a) = 0.2, \quad \delta_1(b) = 0.9,$
 $\delta_2(a) = 0.8, \quad \delta_2(b) = 0.1.$

Let $\tau_i = \{0, \delta_1, 1\}$ and $\tau_2 = \{0, \delta_2, 1\}$ be fuzzy topologies on X. Then the fuzzy bitopological space (X, τ_1, τ_2) is pairwise fuzzy connected between λ and μ but $\neg (\lambda \neq \mu)$.

Theorem 2.6. If a fuzzy bitopological space (X, τ_1, τ_2) is pairwise fuzzy connected neither between λ and μ , nor between λ and μ_1 , then it is not pairwise fuzzy connected between λ and $\mu_0 \cup \mu_1$.

Proof. Since X is pairwise fuzzy connected neither between λ and μ_0 nor between λ and μ_1 , there exists (i, j)-fuzzy clopen fuzzy sets δ_0 and δ_1 in (X, τ_1, τ_2) such that $\lambda \leq \delta_0$, $\neg(\delta_0 \neq \mu_0)$ and $\lambda \leq \delta_1$, $\neg(\delta_1 \neq \mu_1)$. Put $\delta = \delta_0 \cap \delta_1$. Then δ is

(i,j)-fuzzy clopen and $\lambda \leq \delta$. Now we claim that $\neg (\delta \neq (\mu_0 \cup \mu_1))$. If $\delta \neq (\mu_0 \cup \mu_1)$ then there exists a point $x \in X$ such that $\delta(x) + (\mu_0 \cup \mu_1)(x) > 1$. This implies that $\delta \neq \mu_0$ or $\delta \neq \mu_1$, a contradiction. Hence X is not pairwise fuzzy connected between λ and $\mu_0 \cup \mu_1$.

Theorem 2.7. A fuzzy bitopological space (X, τ_1, τ_2) is pairwise fuzzy connected if and only if it is pairwise fuzzy connected between every pair of its non-empty fuzzy subsets.

Proof. Necessity: Let λ and μ be any pair of non-empty fuzzy subsets of X. Suppose (X, τ_1, τ_2) is not pairwise fuzzy connected between λ and μ . Then there is an (i, j)-fuzzy clopen set δ in X such that $\lambda \leq \delta$ and $\neg(\delta \neq \mu)$. Since λ and μ are non-empty, it follows that δ is a non-empty proper (i, j)-fuzzy clopen subset of X. Hence (X, τ_1, τ_2) is not pairwise fuzzy connected.

Sufficiency: Suppose (X, τ_1, τ_2) is not pairwise fuzzy connected. Then there exists a non-empty proper (i, j)-fuzzy clopen subset δ of X. Consequently, (X, τ_1, τ_2) is not pairwise fuzzy connected between δ and $1 - \delta$, a contradiction.

Remark 2.3. If fuzzy bitopological space (X, τ_1, τ_2) is pairwise fuzzy connected between a pair of its subsets then it need not necessarily hold that (X, τ_1, τ_2) is pairwise fuzzy between every pair of its subsets and so it is not necessarily pairwise fuzzy connected as is shown by the next example.

Example 2.4. Let $X = \{a, b\}$ and let δ_1 , δ_2 , λ_1 , λ_2 , μ_1 and μ_2 be defined as follows.

$$\begin{split} &\delta_1(a)=0.4, \quad \delta_1(b)=0.6, \\ &\delta_2(a)=0.6, \quad \delta_2(b)=0.4, \\ &\lambda_1(a)=0.7, \quad \lambda_1(b)=0.8, \\ &\lambda_2(a)=0.3, \quad \lambda_2(b)=0.2, \\ &\mu_1(a)=0.8, \quad \mu_1(b)=0.7, \\ &\mu_2(a)=0.2, \quad \mu_2(b)=0.3. \end{split}$$

Let $\tau_1 = \{0, \delta_1, 1\}$ and $\tau_2 = \{0, \delta_2, 1\}$ be two fuzzy topologies on X. Then (X, τ_1, τ_2) is pairwise fuzzy connected between λ , and μ , but it is not pairwise fuzzy connected between λ_2 and μ_2 . Also (X, τ_1, τ_2) is not pairwise fuzzy connected.

Theorem 2.8. Let $(Y, (\tau_1)_Y, (\tau_2)_Y)$ be a subspace of a fuzzy bitopological space (X, τ_1, τ_2) and let λ , μ be fuzzy sets of Y. If $(Y, (\tau_1)_Y, (\tau_2)_Y)$ is pairwise fuzzy connected between λ and μ then (X, τ_1, τ_2) is also pairwise fuzzy connected between λ and μ .

Proof. Evident.

Theorem 2.9. Let $(Y, (\tau_1)_Y, (\tau_2)_Y)$ be a subspace of a fuzzy bitopological space (X, τ_1, τ_2) and let λ , μ be fuzzy sets of Y. If (X, τ_1, τ_2) is pairwise fuzzy connected between λ and μ and χ_Y is bifuzzy clopen in (X, τ_1, τ_2) then $(Y, (\tau_1)_Y, (\tau_2)_Y)$ is pairwise fuzzy connected between λ and μ .

Proof. Suppose $(Y, (\tau_1)_Y, (\tau_2)_Y)$ is not pairwise fuzzy connected between λ and μ then there exists an (i, j)-fuzzy clopen set δ in X such that $\lambda \leqslant \delta$ and $\neg(\lambda \neq \delta)$. Since χ_Y is bifuzzy open and bifuzzy closed in (X, τ_1, τ_2) , δ is (i, j)-fuzzy clopen in (X, τ_1, τ_2) . Therefore (X, τ_1, τ_2) is not pairwise fuzzy connected between λ and μ , which is a contradiction.

References

- [1] G. Balasubramanian: Fuzzy disconnectedness and its stronger forms. Indian J. Pure Appl. Math. 24 (1993), no. 1, 27–30.
- [2] C. L. Chang: Fuzzy topological spaces. J. Math. Anal. Appl. 24 (1968), 182-190.
- [3] U. V. Fetteh, D. S. Bassan: Fuzzy connectedness and its stronger forms. J. Math. Anal. Appl. III (1985), 449-464.
- [4] M. H. Ghanim, E. E. Kerre, A. S. Mashhour: Separation axioms, subspaces and sums in fuzzy topology. J. Math. Anal. Appl. 102 (1984), 189–202.
- [5] A. Kandil: Biproximities and fuzzy topological spaces. Simon Stevin 63 (1989), 45-46.
- [6] S. N. Maheshwari, S. S. Thakur, Rita Malviya: Conectedness between fuzzy sets. J. Fuzzy Math. 1 (1993), no. 4, 757-759.
- [7] M. N. Mukherjee: Pairwise set connected mappings in bitopological spaces. Indian J. Pure Appl. Math 16 (1989), no. 9, 1106-1113.
- [8] P. M. Pu, Y. M. Liu: Fuzzy topology 1, Neighbourhood structure of a fuzzy point and Moore Smith convergence. J. Math. Anal. Appl. 76 (1980), 571-599.
- [9] S. S. Thakur, Annamma Philip: Connectedness in fuzzy bitopological spaces. Epsilon J. Math. (Submitted).
- [10] L. A. Zadeh: Fuzzy sets. Inform. and Control (Shenyang) 8 (1965), 338-353.

Author's address: S. S. Thakur and Annamma Philip, Department of Applied Mathematics, Government Engineering College, Jabalpur (M.P.)-482001, India.