Photosynthetica 2019, 57(1):226-230 | DOI: 10.32615/ps.2019.017

Machine learning in determination of water saturation deficit in wheat leaves on basis of Chl a fluorescence parameters

K. RYBKA1, M. JANASZEK-MAŃKOWSKA2, P. SIEDLARZ1, D. MAŃKOWSKI1
Plant Breeding and Acclimatization Institute-National Research Institute, IHAR-PIB Radzików,
1 05-870 Błonie, Poland
2 Warsaw University of Life Sciences-SGGW, Nowoursynowska 166, 02-787 Warsaw, Poland

Water saturation deficit (WSD) is a parameter commonly used for detection of plant tolerance to temporary water shortages. However, this parameter does not meet criteria set for screening. On the other hand, measurement of chlorophyll (Chl) a fluorescence is a fast and high-throughput method. This work presents the application of learning systems to set up a model between WSD and Chl a fluorescence parameters allowed for development of a new screening test. Multilayer perceptron (MLP) was trained to predict WSD values on the basis of Chl a fluorescence. The best MLP consisted of three inputs: maximal quantum yield of PSII photochemistry, approximated number of active PSII reaction centres per absorption, and measure of forward electron transport, three hidden nodes and one output (WSD). The MLP precision was 82% with a correlation coefficient of 0.98. Continuous improvement of MLP structure and model adaptation to new data takes place. (1)

Received: January 12, 2018; Accepted: July 11, 2018; Prepublished online: December 7, 2018; Published: January 30, 2019Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
RYBKA, K., JANASZEK-MAŃKOWSKA, M., SIEDLARZ, P., & MAŃKOWSKI, D. (2019). Machine learning in determination of water saturation deficit in wheat leaves on basis of Chl a fluorescence parameters. Photosynthetica57(1), 226-230. doi: 10.32615/ps.2019.017.
Download citation

References

  1. Ashraf M., Harris P.J.C.: Photosynthesis under stressful environ-ments: An overview. - Photosynthetica 51: 163-190, 2013. Go to original source...
  2. Ball P.: Water is an active matrix of life for cell and molecular biology. - P. Natl. Acad. Sci. USA 114: 13327-13335, 2017. Go to original source...
  3. Belue L.M., Bauer K.W. Jr.: Determining input features for multilayer perceptrons. - Neurocomputing 7: 111-121, 1995. Go to original source...
  4. Brown T.B., Cheng R., Sirault X.R.R. et al.: TraitCapture: genomic and environment modelling of plant phenomic data. - Curr. Opin. Plant Biol. 18: 73-79, 2014. Go to original source...
  5. Cybenko G.: Approximation by superpositions of a sigmoidal function. - Math. Control Signal. 2: 303-314, 1989. Go to original source...
  6. Dell Inc.: Dell Statistica (data analysis software system), ver. 13. - software.dell.com, 2016.
  7. Gietler M., Nykiel M., Zagdańska B.M.: Changes in the reduction state of ascorbate and glutathione, protein oxidation and hydrolysis leading to the development of dehydration intolerance in Triticum aestivum L. seedlings. - Plant Growth Regul. 79: 287-297, 2016. Go to original source...
  8. Goltsev V.N., Kalaji H.M., Paunov M. et al.: Variable chlorophyll fluorescence and its use for assessing physiological condition of plant photosynthetic apparatus. - Russ. J. Plant Physl+ 63: 869-893, 2016.
  9. Goltsev V., Zaharieva I., Chernev P. et al.: Drought-induced modifications of photosynthetic electron transport in intact leaves: Analysis and use of neural networks as a tool for a rapid non-invasive estimation. - Biochim. Biophys. Acta 1817: 1490-1498, 2012.
  10. Grosskinsky D.K., Svensgaard J., Christensen S., Roitsch T.: Plant phenomics and the need for physiological phenotyping across scales to narrow the genotype-to-phenotype knowledge gap. - J. Exp. Bot. 66: 5429-5440, 2015. Go to original source...
  11. Grudkowska M., Zagdańska B.: Acclimation to frost alters proteolytic response of wheat seedlings to drought. - J. Plant Physio. 167: 1321-1327, 2010. Go to original source...
  12. Hecht-Nielsen R.: Kolmogorov's mapping neural network existence theorem. - In: Proceedings of the International Conference on Neural Networks. Pp. 11-14, IEEE CS Press, 1987.
  13. Hush D., Horne B.: Progress in supervised neural networks. - IEEE Signal Processing Magazine 332: 8-39, 1993. Go to original source...
  14. Janaszek M., Mańkowski D.R., Kozdój J.: MLP artificial neural networks in predicting the yield of spring barley. - Biuletyn IHAR 259: 93-112, 2011.
  15. Kosová K., Vítámvás P., Hlaváčková I. et al.: Responses of two barley cultivars differing in their salt tolerance to moderate and high salinities and subsequent recovery. - Biol. Plantarum 59: 106-114, 2015. Go to original source...
  16. Kościelniak J., Biesaga-Kościelniak J.: Photosynthesis and non-photochemical excitation quenching components of chlorophyll excitation in maize and field bean during chilling at different photon flux density. - Photosynthetica 44: 174-180, 2006. Go to original source...
  17. Krajewski P., Chen D., Ćwiek H., et al.: Towards recommen-dations for metadata and data handling in plant phenotyping. - J. Exp. Bot. 66: 5417-5427, 2015. Go to original source...
  18. Malferrari M., Mezzetti A., Francia F., Venturoli G.: Effects of dehydration on light-induced conformational changes in bacterial photosynthetic reaction centers probed by optical and differential FTIR spectroscopy. - BBA-Bioenergetics 1827: 328-339, 2013.
  19. Miazek A., Nykiel M., Rybka K.: Drought tolerance depends on the age of the spring wheat seedlings and differentiates patterns of proteinases - Russ. J. Plant Physiol. 64: 333-340, 2017. Go to original source...
  20. Noctor G., Lelarge-Trouverie C., Mhamdi A.: The metabolomics of oxidative stress. - Phytochemistry 112: 33-53, 2015. Go to original source...
  21. Paunov M., Koleva L., Vassilev A. et al.: Effects of different metals on photosynthesis: cadmium and zinc affect chlorophyll fluorescence in durum wheat. - Int. J. Mol. Sci. 19: 787, 2018. Go to original source...
  22. Rapacz M.: Chlorophyll a fluorescence transient during freezing and recovery in winter wheat. - Photosynthetica 45: 409-418, 2007. Go to original source...
  23. Rybka K., Nita Z.: Physiological requirements for wheat ideotypes in response to drought threat. - Acta Physiol. Plant. e37: 1-13, 2015. Go to original source...
  24. Singh A., Ganapathysubramanian B., Singh A.K., Sarkar S.: Machine learning for high-throughput stress phenotyping in plants. - Trends Plant Sci. 21: 110-124, 2016. Go to original source...
  25. Stefański P., Siedlarz P., Matysik P. et al.: The usefulness of light sources based on diodes characterized by a continuous spectrum of white light enriched with a blue band in cereal breeding. - Biuletyn IHAR 283: 1-11, 2018. [In Polish]
  26. Stirbet A., Lazár D., Kromdijk J., Govindjee: Chlorophyll a fluorescence induction: Can just a one-second measurement be used to quantify abiotic stress responses? - Photosynthetica 56: 86-104, 2018. Go to original source...
  27. Strasser R.J., Srivastava A., Govindjee. Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria. - Photochem. Photobiol. 61: 32-42, 1995. Go to original source...
  28. Strasser R.J., Tsimilli-Michael M., Srivastava A.: Analysis of the chlorophyll a fluorescence transient. - In: Papageorgiou G.C., Govindjee (ed.): Chlorophyll a Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration, Vol. 19. Pp. 321-362. Springer, Dordrecht 2004.
  29. Vadez V., Kholová J., Hummel G. et al.: LeasyScan: a novel concept combining 3D imaging and lysimetry for high-throughput phenotyping of traits controlling plant water budget. - J. Exp. Bot. 66: 5581-5593, 2015. Go to original source...
  30. Żurek G., Rybka K., Pogrzeba M. et al.: Chlorophyll a fluorescence in evaluation of the effect of heavy metal soil contamination on perennial grasses. - PLoS ONE 9: e91475, 2014.