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Abstract. The diameter of a graph G is the maximal distance between two vertices of G. A
graph G is said to be diameter-edge-invariant, if d(G−e) = d(G) for all its edges, diameter-
vertex-invariant, if d(G − v) = d(G) for all its vertices and diameter-adding-invariant if
d(G+ e) = d(e) for all edges of the complement of the edge set of G. This paper describes
some properties of such graphs and gives several existence results and bounds for parameters
of diameter-invariant graphs.
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1. Introduction

Let G be an undirected, finite graph without loops or multiple edges. Then we

denote by: V (G) the vertex set of G; E(G) the edge set of G; G the complement

of G with the edge set E(G); dG(u, v) (or simply d(u, v)) the distance between two

vertices u, v in G; e(u) the eccentricity of u. The radius r(G) is the minimum of the

vertex eccentricities, the diameter d(G) is the maximum of the vertex eccentricities;

degG(v) is the degree of vertex v in G and ∆(G) is the maximum degree of G. The

notions and notations not defined here are used accordingly to the book [2].

Harary [9] introduced the concept of changing and unchanging of a graphical

invariant i, asking for characterization of graphs G for which i(G − v), i(G − e) or

i(G + e) either differ from i(G) or are equal to i(G) for all v ∈ V (G), e ∈ E(G)

or e ∈ E(G) respectively. Some of the most important invariants (for example in

communications) are the radius and the diameter of a graph.

Even earlier, in late sixties A.Kotzig initiated the study of graphs for which

d(G − e) > d(G) for all e ∈ E(G). These graphs are called diameter-minimal, for
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example see the papers of Glivjak, Kyš and Plesník [6], [7], [12]. Later on S.M. Lee

[10], [11] initiated the study of graphs for which d(G − e) = d(G) for all e ∈ E(G)

and he called them diameter-edge-invariant.

From the practical point of view we need to study the stability of the radius and

the diameter of a graph G, especially when an arbitrary edge or vertex is removed

from G. This operation can represent a single failure of communication line or any

communication center (processor, etc.). The papers [1], [3], [5], [13] examine several

properties of graphs in which radii do not change under these two conditions, and

moreover, when an arbitrary edge is added to the graph G. These graphs are defined

as follows:

Definition 1.1. A graph G is:

(1) radius-edge-invariant (r.e.i.) if r(G − e) = r(G) for every e ∈ E(G);

(2) radius-vertex-invariant (r.v.i.) if r(G − v) = r(G) for every v ∈ V (G);

(3) radius-adding-invariant (r.a.i.) if r(G + e) = r(G) for every e ∈ E(G).

According to this definition and to the previous study of diameter-edge-invariant

graphs [10], [11], [13] we can define the following classes of graphs:

Definition 1.2. A graph G is:

(1) diameter-edge-invariant (d.e.i.) if d(G − e) = d(G) for every e ∈ E(G);

(2) diameter-vertex-invariant (d.v.i) if d(G − v) = d(G) for every v ∈ V (G);

(3) diameter-adding-invariant (d.a.i.) if d(G + e) = d(G) for every e ∈ E(G).

Following this definition, in the beginning of Section 2 we will prepare some aux-

iliary results concerning operations on diameter-invariant graphs. Then, using them

we will construct several d.e.i., d.v.i. and d.a.i. graphs. We will also characterize the

d.v.i. and d.a.i. graphs of diameter 2. In Section 3 we will try to find some bounds

for diameter-invariant-graphs.

2. Existence results

We first give some preliminary results about operations on graphs.

Recall that the join of graphs G and H is denoted G + H and consists of G ∪ H

and all edges of the form uivj where ui ∈ G, vj ∈ H . It is obvious that d(G+H) = 1

if G and H are complete graphs and d(G + H) = 2 otherwise. Also degG+H(v) =

degG(v) + |V (H)| for all v ∈ V (G) and degG+H(u) = degH(u) + |V (G)| for all

u ∈ V (H). Lee [10] gave several results for d.e.i. graphs.
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Theorem 2.1. The join of graphs G, H is diameter-vertex-invariant

(1) of diameter 1 if and only if G = Kn, H = Km, m · n 6= 1,

(2) of diameter 2 if and only if there are at least two edges in E(G) ∪ E(H) not

joined to the same vertex and

a) G = K1 (or H = K1) and d(H) = 2 (d(G) = 2), or

b) |V (G)| > 1 and |V (H)| > 1.

��
������
. (1) The first case is obvious, as every complete graph is d.v.i., except

K1 and K2. G + H is a complete graph if and only if G is a complete graph and H

is a complete graph.

(2) If d(G+H) = 2 and all edges in E(G)∪E(H) are connected to a single vertex

v then d(G + H − v) = 1, a contradiction.

a) Now let G = K1 = {v}. Then d(G+H−v) = d(G+H) if and only if d(H) = 2.

For all vertices u ∈ V (H) we have d(G + H − u) = 2, as there exists at least one

edge ab ∈ E(H − u) and d(G + H − u) 6 2r(G + H − u) 6 2e(v) = 2.

b) Let G and H have both at least 2 vertices. Consider v ∈ V (G+H) and a graph

G + H − v. For all u, w ∈ V (G + H − v) we have d(u, w) = 1 if u ∈ G, w ∈ H and

d(u, v) 6 2 if u, w ∈ H (or u, w ∈ G). The fact that E(G + H − v) > 1 implies that

d(G + H − v) = 2. �

The next observation is obvious.

Theorem 2.2. The join of graphs G, H is diameter-adding-invariant of radius 2

if and only if |E(G)| + |E(H)| > 2.

Consider a finite connected graph I . Let {Gi : i ∈ V (I)} be a class of graphs

indexed by a finite set V (I).

The Sabidussi sum S+({Gi : i ∈ V (I)}) (or shortly S+) of {Gi : i ∈ V (I)} is a

graph defined as follows:

V (S+({Gi : i ∈ V (I)})) =
⋃

{V (Gi) : i ∈ V (I)}, E(S+({Gi : i ∈ V (I)}))

=
⋃

{E(Gi) : i ∈ V (I)} ∪ {xy : x ∈ V (Gi), y ∈ V (Gj), ij ∈ E(I)}.

Sabidussi sum is sometimes called X-join. One can show that d(S+(
⋃

{Gi : i ∈

V (I)})) = d(I).

Lee [11] gives the following theorem.
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Theorem 2.3. Let I be a graph of diameter d > 2. For any class of connected

graphs {Gi : i ∈ V (I)} with |V (Gi)| > 2 for all i, the Sabidussi sum S+({Gi : i ∈

V (I)}) is diameter-edge-invariant with diameter d. Moreover, if I is diameter-edge-

invariant then S+({Gi : i ∈ V (I)}) is diameter-edge-invariant without the restriction

of |V (Gi)| > 2.

However, the assumption that Gi be connected is unnecessary for d > 3.

Theorem 2.4. Let I be a graph of diameter d > 3. For any class of graphs

{Gi : i ∈ V (I)} with |V (Gi)| > 2 for all i, the Sabidussi sum S+({Gi : i ∈ V (I)}) is

diameter-edge-invariant with diameter d.

��
������
. It is sufficient to show that in any S+ − e there are no vertices u, v at

distance greater than d > 3. If u, v are from the same graph Gi or if u ∈ V (Gi), v ∈

V (Gj), d(i, j) > 1, then there are at least 2 edge-disjoint paths of length at most d

joining u and v. Therefore dS+−e(u, v) 6 d for all e ∈ E(S+).

Let u ∈ V (Gi), v ∈ V (Gj) be two vertices such that ij ∈ E(I) and suppose that

there is no other path of length at most d joining u, v. Since d(I) > 2, we have

at least one vertex w ∈ I adjacent to i (or j), some other vertex a ∈ V (Gi) (or

a ∈ V (Gj)) and some vertex b ∈ V (Gw). But then we have at least two edge-disjoint

paths of length at most three joining u and v—the edge uv and the path u-a-b-v.

Therefore dS+
−e(u, v) 6 3 6 d for all e ∈ E(S+). �

We can prove similar result for d.v.i. graphs:

Theorem 2.5. Let I be a graph of diameter d > 2. For any class of graphs

{Gi : i ∈ V (I)} with |V (Gi)| > 2 for all i, the Sabidussi sum S+({Gi : i ∈ V (I)})

is diameter-vertex-invariant with diameter d. Moreover, if I is diameter-vertex-

invariant then S+({Gi : i ∈ V (I)}) is diameter-vertex-invariant without the restric-

tion of |V (Gi)| > 2.

��
������
. If |V (Gi)| > 2 then for any two vertices u, v at distance d(u, v) > 2,

there are at least two vertex-disjoint paths of length d(u, v). Therefore dS+
−w(u, v)

6 d for all w 6= u, v. Let i, j be two vertices of graph I such that d(i, j) = d(I).

As V (Gi) > 2 and V (Gj) > 2, for all w ∈ V (S+) there are at least two vertices at

distance d in S+ −w. Finally, d(S+ −w) = d(S+) and S+ is d.v.i. The second part

of the result is obvious. �
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Theorem 2.6. Let I be a diameter-adding-invariant graph of diameter d > 2.

For any class of graphs {Gi : i ∈ V (I)}, the Sabidussi sum S+({Gi : i ∈ V (I)}) is

diameter-adding-invariant with diameter d.

��
������
. We will prove this theorem by contradiction. Let S+ be not a d.a.i.

graph. It is clear that for all vertices a, b ∈ Gk there is d(S+ + ab) = d(S+) = d(I).

Thus we have two vertices v ∈ Gi, u ∈ Gj such that d(S+ + uv) < d(S+) = d(I).

But then d(I + ij) 6 d(S+ + uv) < d(S+) = d(I), a contradiction. �

The corona G ◦ H of graphs G and H was defined by Frucht and Harary ([4], see

also [2]) as the graph obtained by taking one copy of G of order pG and pG copies

of H , and then joining the i’th vertex of G to every vertex in the i’th copy of H . If

the i’th vertex is named v, then the copy belonging to v will be named Hv.

It is clear that if pG > 1, r(G) = rG, d(G) = dG, then r(G ◦ H) = rG + 1,

d(G ◦ H) = dG + 2 and v is a central vertex of G ◦ H if and only if v is a central

vertex of G. Moreover, h ∈ Hv is a peripheral vertex of G ◦ H if and only if v is a

peripheral vertex in G. Since d(G◦H−v) = ∞ for v ∈ G and eG◦H−hv(h) > d(G◦H)

for the peripheral vertex v of the graph G and h ∈ Hv, the corona of two graphs will

never be d.e.i. or d.v.i.

The paper [1] gives the following theorem:

Theorem 2.7. For any graphs G, H , such that |V (G)| > 3, the corona G ◦H is

radius-adding-invariant if and only if G is radius-adding-invariant.

For the diameter of G ◦ H the following theorem holds:

Theorem 2.8. For any graphs G, H , such that |V (G)| > 3, H 6= K1 the corona

G ◦ H is diameter-adding-invariant if and only if G is diameter-adding-invariant.

��
������
. (=⇒) Suppose that G ◦H is d.a.i., but G is not d.a.i. Let e ∈ E(G) be

an edge such that d(G + e) < d(G). Therefore

d(G ◦ H + e) = d((G + e) ◦ H) = d(G + e) + 2 < d(G) + 2 = d(G ◦ H),

a contradiction.

(⇐=) We consider various possibilities for an edge e ∈ E(G ◦ H).

(1) If e ∈ E(G), then

d(G ◦ H + e) = d(G + e) + 2 = d(G) + 2 = d(G ◦ H).

(2) If e ∈ E(Hv) for any v ∈ V (G), then for all w ∈ V (G ◦H) we have eG◦H(w) =

eG◦H+e(w) and thus d(G ◦ H) = d(G ◦ H + e).
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(3) Suppose e = uhv where u ∈ V (G), hv ∈ Hv, v 6= u. Let d(G◦H+e) < d(G◦H).

If x and y are two peripheral vertices of G ◦ H such that d(x, y) = d(G ◦ H), then

the x-y geodesic in G ◦ H + e must contain e. Moreover, if x /∈ Hv and y /∈ Hv

then u-hv-v is a part of the x-y geodesic in G ◦ H + e. But then for all such pairs

dG◦H+uv(x, y) < d(G ◦ H).

On the other hand let, for example, x ∈ Hv. It is clear that for all z ∈ Hv, z 6= x

we have dG◦H+e(y, z) > dG◦H+e(y, x)+1. But then again dG◦H+uv(x, y) < d(G◦H)

and dG◦H+uv(x, hv) < d(G ◦ H). This leads to the case (1) which was discussed

above.

(4) Finally, suppose e = huhv where u, v ∈ V (G), hu ∈ Hu, hv ∈ Hv , v 6= u. Let

d(G◦H+e) < d(G◦H). It is obvious that for all h′

u ∈ Hu, h
′

v ∈ Hv, h
′

u 6= hu, h
′

v 6= hv

we have eG◦H+e(h
′

u) > eG◦H+e(hu) and eG◦H+e(h
′

v) > eG◦H+e(hv). Thus if x and y

are two peripheral vertices of G◦H different from hu, hv such that d(x, y) = d(G◦H),

then the x-y geodesic in G ◦H + e must contain e. Moreover, the x-y geodesic must

contain a subpath of length three of the form u-hu-hv-v, h
′′

u-hu-hv-v or h′′

u-hu-hv-h
′′

v .

Consider the graph G◦H +uv. To obtain an x-y path of length less than d(G◦H)

it is sufficient to take u-v instead of u-hu-hv-v, h
′′

u-u-v instead of h
′′

u-hu-hv-v or h′′

u-

u-v-h′′

v instead of h′′

u-hu-hv-h
′′

v in the x-y geodesic formed in G ◦ H + huhv. Thus

dG◦H+huhv
(x, y) > dG◦H+uv(x, y) and since dG◦H+uv(h′

u, h′

v) = dG◦H+uv(hu, hv) =

dG◦H+uv(hu, h′

v) = dG◦H+uv(h′

u, hv) we have dG◦H+uv(a, b) < d(G ◦H) for all a, b ∈

V (G ◦ H). Therefore d(G ◦ H + uv) < d(G ◦ H). But this is the case (1) which was

discussed above. �

If H = K1 and G is d.a.i. having |V (G)| > 3 then G ◦ H is not necessarily d.a.i.:

Consider the group � 2r+1 and define a graph G �
2r+1
in the following way:

V (G) = {(i, j) ; i, j ∈ � 2r+1},

(i1, j1)(i2, j2) ∈ E(G) ⇐⇒ |i1 − i2| 6 1 ∧ |j1 − j2| 6 1.

If (i1, j1) and (i2, j2) are two vertices of G �
2r+1
, then d((i1, j1), (i2, j2)) =

max{min{|i1 − i2|, 2r + 1−|i1 − i2|}, min{|j1 − j2|, 2r + 1−|j1 − j2|}} 6 r. Since for

each vertex u = (i, j), there are 8r vertices uk = (ik, jk), ik = i+r mod(2r+1)∨ik =

i + r + 1 mod(2r + 1) ∨ jk = j + r mod(2r + 1) ∨ jk = j + r + 1 mod(2r + 1) such

that d(u, uk) = r, the graph G �
2r+1
is self-centered of radius r.

Now, consider a graph G′ obtained in the following way: Suppose V (G′) =

V (G �
2r+1

) + v, E(G′) = E(G �
2r+1

) + uv where u = (i, j) ∈ V (G �
2r+1

). We

have eG′(v) = d(G �
2r+1

) + 1 = d(G′). Let f ∈ E(G′) be an arbitrary edge. If

f ∈ E(G �
2r+1

), then eG �
2r+1

(w) = eG �
2r+1

+f (w) for all w ∈ V (G �
2r+1

) and thus

d(G′) = eG′(v) = eG′+f (v) = d(G′ + f). If f /∈ E(G �
2r+1

), then f is of type v(i′, j′)

where i 6= i′, or j 6= j′. It is sufficient to take the vertex a = (i + r mod(2r + 1), j ′ +
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r mod(2r + 1)) to obtain a vertex such that d(a, v) = d(G �
2r+1

) + 1 = d(G′). Thus

G′ is d.a.i.

Now consider a graph G′ ◦K1. Let Hv = {b} be a copy of K1 belonging to v ∈ G′.

One can show that d(G′ ◦ K1 + bu) = d(G′) + 1 < d(G′ ◦ K1). Thus G′ ◦ K1 is not

d.a.i.

Consider the two following graphs I1, I2:

Figure 1

In the first case d = 2r, in the second d = 2r − 1. Since in both graphs there are

three pairs of vertices {a, b}, {b, c}, {c, a} at distance d, and adding a single edge

may change at most two of these distances, both graphs are d.a.i. of diameter d for

all r > 1.

Lee [10] showed, as a consequence of Theorem 2.3, that any connected graph is an

induced subgraph of a d.e.i. graph of diameter d > 2. Walikar et. al. [3] showed that

for every graph G, the graph H formed as K2 + G + K2 is d.e.i. As a consequence

they got that every graph could be embedded in a d.e.i. graph. Later in this section

we will show that for each graph G, there is an d.e.i., d.v.i. and d.a.i. graph H of

diameter d having G as an induced subgraph.

Lemma 2.9. Let G be a graph with at least two vertices. Then the graph

H = K2 + G + K2 is diameter-vertex-invariant and diameter-adding-invariant of

diameter 2.

��
������
. One can show that d(H) = 2. As |E(H)| > 1, it is clear that H is d.a.i.

We can write H = (K2 + G) + K2. Thus by Theorem 2.1 H is d.v.i. �

Theorem 2.10. Every graph G can be embedded as an induced subgraph in

a diameter-edge-invariant, diameter-vertex-invariant and diameter-adding-invariant

graph H of diameter d > 2.

��
������
. Suppose G has at least two vertices. It is sufficient to take the graph

K2 + G + K2 for d = 2 and the Sabidussi sum S+({Gi ≡ G : i ∈ V (I)}) where I is

a graph I1 if d = 2k or I2 if d = 2k + 1. It follows from the results of the previous

section that S+ is d.e.i., d.v.i. and d.a.i.
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If G = K1 then it is a subgraph of any graph, and as for each d there exists d.e.i.,

d.v.i. and d.a.i. graph H , the theorem holds. �

Because of the previous theorem, we cannot obtain a forbidden subgraph charac-

terization for all d.e.i., d.v.i., and d.a.i. graphs.

Bálint and Vacek in [1] constructed several r.e.i., r.v.i. and r.a.i. graphs. We will

now show that there are graphs which radius and diameter are both invariant.

Theorem 2.11. Let r, d be natural numbers such that 2 6 r < d 6 2r.

Let G be a graph with at least two vertices. Then there exists a radius-edge-

invariant, diameter-edge-invariant, radius-vertex-invariant and diameter-vertex-

invariant graph H such that r(H) = r, d(H) = d, C(H) = V (G) and G is an

induced subgraph of H .

[1] gives a somewhat weaker result with similar graph construction for radius-

invariant graphs only.
��
������

. For d 6= 2r − 1 consider the following graph Q:

Figure 2

Q is formed by 2 central vertices c1, c2; by 2(d − 1) + 1 rows of vertices in 2(r − 1)

columns and by 4 additional vertices v1, v2, u1, u2. Every column except 1 and

2(r−1) (counted from the left side) has 2(d−r)+1 vertices. Columns 1 and 2(r−1)

have 2(2(d − r) + 1) vertices. Vertices c1, c2 are adjacent to all vertices in columns

r − 1 and r. Vertices v1, v2 (u1, u2) are adjacent and joined to all vertices in row 1

(2(d− r) + 1) and columns 1 and 2(r − 1). Vertex in row k and column l is adjacent
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to all vertices in row k and columns l − 1, l + 1 and to all vertices in column l and

rows k − 1, k + 1 except the case when l = r − 1 or l = r.

It is clear that e(c1) = e(c2) = r, e(v) > r otherwise, and d(ui, vj) = min{d(vi, c1)

+d(c1, uj), 2(d − r) + 2}. Since d 6= 2r − 1 we have 2(d − r) + 2 6 d or 2r 6 d

and thus d(ui, vj) 6 d. For any other vertex x, x 6= ci, x 6= ui (or vi) we have

d(x, vi) 6 min{2(d − r) + 1, 2r − 2} 6 d. Now, let y, z be arbitrary vertices except

ui, vi, ci. When y, z belong to the same row and the same half (right or left) of Q

we obviously have d(y, z) < r < d. Consider a shortest cycle F such that y, z ∈ F .

The length of the cycle F can be at most 2 + 2(d − r) + 2(r − 1) = 2d if it is made

as a sequence of y − c1, c1 − z, z − ui (or z − vi), ui − y (or vi − y) geodesics or less

otherwise. This implies d(x, y) 6 d. Thus for all w ∈ V (Q) we have e(w) 6 d.

To obtain vertices o, p such that d(o, p) = d it is sufficient to take the vertex o in

row 1 and column 1 and the vertex p in row 2(d − r) + 1 and column d + 1. This

implies that r(Q) = r and d(Q) = d. Note: There are more than one pair of such

vertices.

Since for every vertex a, a 6= ci there are at least two edge and vertex-disjoint

c1 − a (or c2 − a) paths, and, in addition there are four vertices in the graph Q at

distance r from c1, c2, we have r(Q − e) = r(Q − b) = r for all e ∈ E(Q), b ∈ V (Q),

Q is r.e.i. and r.v.i.

Next, we will show that Q is also d.e.i. and d.v.i. We have already proved that

eQ−e(ci) = eQ−b(ci) = r. Consider the eccentricity of the vertices vi (uj). Let s be

any vertex except vi(uj) and suppose s does not belong to row 1 (or 2(d − r) + 1).

Thus there are at least two edge and vertex-disjoint ui-s geodesics. It is clear that

dQ−u1u2
(u1, u2) = 2 and for all vertices t in row 1 we have d(ui, t) 6 (r − 1) + 2 6 d.

Thus for all e ∈ E(Q), b ∈ V (Q) we have eQ−e(ui) 6 d and eQ−b(ui) 6 d.

Now let y, z be arbitrary vertices except ui, vi, ci. One can show that if vertices

y, z do not lie in the same row and the same half of the graph Q, then the length of

at most one of the y-c1, c1-z, z-ui (z-vi), ui-y (vi-y) geodesics is different in Q and

in Q − e (Q − b). It follows directly from the construction of Q that the difference

in lengths of these paths can be at most 1. Consider a shortest cycle F ′ such that

y, z ∈ F ′. The length of the cycle F ′ can be at most 2+2(d−r)+2(r−1)+1 = 2d+1

if it is made as a sequence of y-c1, c1-z, z-ui (or z-vi), ui-y (or vi-y) geodesics in

Q − e (Q − b). Thus dQ−e(y, z) 6 d and dQ−b(y, z) 6 d.

We can obtain vertices o, p ∈ V (Q − b) such that d(o, p) = d in the same way as

in Q. Finally, for d 6= 2r − 1 the graph Q is r.e.i., r.v.i., d.e.i. and d.v.i. of radius r

and diameter d.

For d = 2r − 1 it is sufficient to take only d − 1 rows of vertices. It is clear that

d(ui, vj) = d. All other facts could be proved similarly as above and we leave the

details to the reader.
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The desired graph H is obtained from the graph Q by substituting the graph G

instead of the vertices c1, c2. �

Theorem 2.12. Let r, d be natural numbers such that r 6 d 6 2r. Then there

exists a radius-adding-invariant and diameter-adding-invariant graph G such that

r(G) = r and d(G) = d.
��
������

. It is sufficient to take the tree I1 if d = 2r and the following tree for

d = 2r − 1.

Figure 3

Otherwise the desired graph can be constructed as follows: Denote G0 = G �
2k+1

where k = 2r − d > 2. From [1] we have that G0 is r.a.i. Since G0 is self-centered

and r(G0 + e) 6 d(G0 + e) 6 d(G0) = r(G0) it is also d.a.i.

We will construct a graph Gi+1 from the graph Gi as Gi+1 = Gi ◦ H , H 6= K1.

From Theorem 2.7 and from Theorem 2.8 it follows directly that every graph Gi

is r.a.i. and d.a.i. For i = d − r we have an r.a.i. and d.a.i. graph Gd−r such that

r(Gd−r) = i · 1 + r(G0) = (d − r) + (2r − d) = r and d(Gi) = i · 2 + d(G0) =

2(d − r) + (2r − d) = d. �

Walikar, Buckley and Itagi [13] showed that any graph G of diameter 2 is d.e.i. if

and only if every edge of G is contained in a triangle and if there are at least two

geodesics for all vertices v, w at distance 2. As we have already stated, a graph G

of diameter d = 2 is d.a.i. if and only if E(G) > 2. For d.v.i. graphs we have the

following result.

Theorem 2.13. Suppose that a graph G has diameter 2. Then G is diameter-

vertex-invariant if and only if

(1) for all u, v ∈ V (G) such that d(u, v) = 2 there are at least two u-v geodesics,

(2) there are at least two edges a1a2, b1b2 ∈ E(G) not incident with the same

vertex.

��
������
. (=⇒)

(1) Suppose there is only one such geodesic u-x-v. Then dG−x(u, v) > 3, a contra-

diction.
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(2) Let all edges in E(G) have one joint incident vertex v. Then G−v is a complete

graph. Therefore d(G − v) = 1 which is again a contradiction.

(⇐=) Consider an arbitrary vertex w ∈ V (G) and the graph G − w. From (2) it

follows that we have E(G − w) > 1, and thus d(G − w) > 1. For any two vertices

u, v ∈ V (G − w) there is dG(u, v) 6 2. If dG(u, v) = 2, then from (1) it follows that

there must be some path u-a-v in G − w. Therefore d(u, v) = 2. �

3. Some bounds

A k-depth spanning tree (k-DST) of a graph G is a spanning tree of G of height k.

It must be true that k 6 d, and if k = d, such trees must be rooted at a peripheral

vertex. A breadth first search algorithm beginning with any vertex v such that

e(v) = k will always produce a k-DST. Moreover, if d(u, v) = i then the vertex u

belongs to level i. We will consider only breadth first search distance spanning trees

later in this paper.

Theorem 3.1. Let G be a diameter-edge-invariant graph with n vertices and

diameter d. Then for all v ∈ V (G)

(1) 2 6 deg(v) 6 n − 1
2 (3d − 6) (except d = 2 where it is 2 6 deg(v) 6 n − 1) if

d is even and

(2) 2 6 deg(v) 6 n − 1
2 (3d − 5) if d is odd.

Moreover, all these bounds are sharp.
��
������

. The lower bound is obvious as G has no bridges. Consider a d-DST

rooted at a peripheral vertex x.

There must be at least one vertex y on level d. As G is d.e.i. there are at least

two edge-disjoint x-y paths of length d in G. Thus there are no levels i, i + 1 both

with only one vertex. Because of this we have at most 1
2d + 1 levels with only one

vertex if d is even and at most 1
2 (d + 1) levels with only one vertex if d is odd.

Any vertex v on level i can be adjacent only to vertices on levels i − 1, i, i + 1.

Thus there are at least d − 2 remaining levels with vertices which are not adjacent

to v. At most 1
2d ( 12 (d − 1) if d is odd) of these levels have only one vertex.

Therefore

deg(v) 6 n − 1 − 2

(

d

2
− 2

)

+
d

2
= n −

3d − 6

2

if d is even and

deg(v) 6 n − 1 − 2(d − 2) +
d − 1

2
= n −

3d − 5

2

if d is odd.
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Figure 4

There is one exception. For d = 2 it is 1
2 (3d−6) = 0. But for any graph G it must

hold deg(v) 6 n − 1.

To obtain a graph which reaches the bound it is sufficient to take H1 = Kn− 3
2
d+1

in the graph G1 if d is even and H2 = Kn−(3d−1)/2 in the graph G2 if d is odd. In

both graphs x has the minimal and z the maximal possible degree. �

Lee [11] gave the bound for the minimal number of vertices in d.e.i. graphs of

diameter d which is 3
2d + 1 vertices if d is even and 3

2 (d + 1) vertices if d is odd.

Theorem 3.2. Let G be a diameter-vertex-invariant graph with n vertices and

diameter d. Then for all v ∈ V (G)

(1) deg(v) = n − 1, if d = 1,

(2) 2 6 deg(v) 6 n − 1 if d = 2,

(3) 2 6 deg(v) 6 n − 3 if d = 3,

(4) 2 6 deg(v) 6 n − 4 if d = 4 unless n = 2d + 2 = 10, for which it is

2 6 deg(v) 6 5,

(5) 2 6 deg(v) 6 n − 2d + 3 if d > 5.

These bounds are sharp.

��
������
. The first two statements are obvious. If d = 3 then there is no vertex v

such that e(v) = n − 2. Otherwise there is a unique vertex u such that d(u, v) = 2.

Thus d(G − u) 6 2r(G − u) = 2eG−u(v) = 2, a contradiction.

Suppose that d(G) > 4. Consider two vertices u, v such that d(u, v) = d and two

d-DST T1, T2 rooted at peripheral vertices v and u. Since G has no cut-vertices,

each of these trees has at least 2 vertices on each of the levels 1, . . . , d − 1. We will

prove the bound by a contradiction.

Let there be a vertex w such that deg(w) > n − 2d + 3. If it belongs to level i,

then it could be adjacent only to vertices on levels i−1, i, i+1 (if such exist). Since

deg(w) > n − 2d + 3, for d − 2 levels there remain at most 2d − 5 vertices. Thus

(1) w is adjacent to every vertex on level i − 1, i, i + 1, or
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(2) for all trees T1, T2 there is exactly 1 vertex on each of the levels 0 and d and

2 vertices on every other level except i − 1, i, i + 1.

Moreover, it is clear that there is a diametral path P such that w ∈ P .

(1) At least one tree Ti contains the vertex w on level i > d 1
2de. Let it be the

tree T1 and let it contain only one vertex (for example u) on level d. Then we can

prove that d(G − u) = d − 1: Let a1, a2 be two vertices on levels higher than i and

b1, b2 be two vertices on levels lower than i. Therefore d(ai, bk) < d(u, bk) 6 d. As

d(ai, w) < 1
2d we have d(a1, a2) < d. Moreover, G is d.v.i., and thus the vertices

b1, b2 lie on a cycle. The vertex w is adjacent to all vertices on level i − 1 and

therefore the length of this cycle must be less than 2d. Thus d(b1, b2) < d. Finally,

d(G − u) = d − 1, a contradiction. As a result of this part we already get that

∆(G) 6 n − 2d + 4.

Let the tree T1 contain two vertices on level d and let ∆(G) = n − 2d + 4. Thus

there are exactly 2 vertices on each level 1, . . . , i−2. Let us mark the vertices on level

2 as c1, c2. It must be deg(c1) > 2 and deg(c2) > 2. Otherwise, if xcj ∈ E(G), x 6= v

then

d(G − x) > eG−x(cj) > d(ci, u) = d(ci, v) + d(v, u) = d + 1 > d.

If c1c2 ∈ E(G) or if i− 1 > 2 (and thus there are only 2 vertices on level 2), then in

G−v all vertices on levels lower than i lie on a cycle of length less than 2d. Similarly

as in previous part d(G − v) = d − 1.

Now, consider the case in which c1c2 ∈ E(G) and i−1 = 2. Then dG−v(c1, c2) 6 4

and thus for any vertex y ∈ V (G − v) we have eG−v(y) 6 max{4, d − 1}. Finally, it

holds ∆(G) 6 n − 2d + 3 with the exception of d = 4. In that case we cannot use

the same arguments as those given in the previous paragraph. Therefore, we obtain

only the inequality ∆(G) 6 n − 2d + 4 = n − 4.

If n = 2d + 2 = 10, then there are at most 3 vertices on level 2. In that case

dG−v(c1, c2) 6 2 and thus eG−v(y) 6 max{2, d − 1} < d for all y ∈ V (G − v).

Therefore ∆(G) 6 n − 2d + 3 = 5.

(2) Suppose ∆(G) > n− 2d+4. We can use the same arguments and notations as

above. If, for example d(u, w) < 1
2d then d(G−u) = d−1. If d(u, w) = d(w, v) = 1

2d

then for a tree T1 rooted at central vertex v with the vertex w on level i either w is

adjacent to every vertex on level i− 1 or w is adjacent to every vertex on level i + 1.

Thus d(G − v) = d − 1 in the first case or d(G − u) = d − 1 in the second case.

Suppose 4 6= d > 3 or 2d + 2 = 10 = n. The graph G (where H = Kn−2d, see

Figure 5) certifies that our bounds are sharp. The following graph (see Figure 6) is

for d = 4, n 6= 10 (H = Kn−10).

For d = 2 it is sufficient to take C4 and substitute any vertex of C4 with Kn−3. �

Similarly as the previous theorem we can prove the following result:
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Theorem 3.3. Diameter-vertex-invariant graph of diameter d > 3 has at least

2d + 2 vertices.

To obtain a d.v.i. graph with 2d + 2 vertices is sufficient to take K2 instead of H

in Figure 5.

Figure 5

Figure 6

Theorem 3.4. Let G be a diameter-adding-invariant graph with n vertices and

diameter d > 3. Then for all v ∈ V (G)

(1) deg(v) 6 n − 3
2d + 2 if d is even,

(2) deg(v) 6 n − 3
2 (d + 1) + 3 if d is odd.

These bounds are sharp.
��
������

. Consider a diametral u-v path and the cycle F of length d + 1 in the

graph G + uv formed by the u-v path and the edge uv. The eccentricity of every

vertex w in the subgraph F is d 1
2de. Also dF (s, t) = dG+uv(s, t) for all s, t ∈ F .

Moreover, since G is d.a.i., there are at least two vertices x, y ∈ V (G+uv) such that

dG+uv(x, y) = d.�������
1: x ∈ F

Let z be the last joint vertex of the x-y geodesic and of the cycle F . One can

prove that dG+uv(z, y) > b 1
2dc. For every a ∈ V (G + uv) we have:

(1) a is adjacent to at most 3 successive vertices of F . Otherwise dG(u, v) < d(G).

(2) a is adjacent to at most 3 successive vertices of any z-y geodesic. Otherwise

dG+uv(x, y) < d(G).

(3) a is adjacent to at most 4 vertices of the cycle F and of some z-y geodesic

together. (Only if a is adjacent to z and its neighbours.) Otherwise dG+uv(x, y) <

d(G).
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(4) if a = z then it is adjacent to at most 3 vertices of the cycle F and of some

z-y geodesic together.�������
2: x /∈ F , y /∈ F

It is clear that the x-y geodesic contains at most d 1
2de vertices of cycle F . If two

vertices b, c belong to F and to the x-y geodesic, then some b-c geodesic belongs to

F . For every a ∈ V (G + uv) we have:

(1) a is adjacent to at most 3 successive vertices of F . Otherwise d(u, v)G < d(G).

(2) a is adjacent to at most 3 successive vertices of any x-y geodesic. Otherwise

dG+uv(x, y) < d(G).

(3) If the cycle F and the x-y geodesic have d 1
2de vertices in common, then a is

adjacent to at most 4 vertices of the cycle F and the x-y geodesic together. If the

cycle F and the x-y geodesic have d 1
2de − i vertices in common, then a is adjacent

to at most 4 + i vertices of the cycle F and the x-y geodesic together. Otherwise

dG+uv(x, y) < d(G).

(4) If a belongs both to x-y geodesic and to the cycle F then it is adjacent to at

most 3 vertices of the cycle F and the x-y geodesic together.

Thus a is adjacent to at most n− 1− (d+1+ d 1
2de− 4) vertices which is the same

as the bounds.

To obtain a graph which certifies that the bounds are the best possible it is suf-

ficient to take the graphs I1 (I2) and substitute some central vertex with the graph

Kn−3d/2 (or Kn−(3d+1)/2). �

The next bound follows immediately from the proof of the previous theorem.

Theorem 3.5. Diameter-adding-invariant graph of diameter d has at least

(1) 3
2d + 1 vertices if d is even,

(2) 1
2 (3d + 1) vertices if d is odd.
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