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G(n, p) oo Erdés—Rényi random graph (here n € N and p € (0,1)):
o vertex set {1,...,n}

@ each edge is included with probability p

w(G(n, p)) ..... the order of the largest clique in G(n, p)

Theorem (Grimmet and McDiarmid 1975; Matula 1976)

It holds a.a.s. that

w(G(n,p)) = (1 +0(1)) -

-logn .

(1/p)
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A graphon (introduced by Lovész and Szegedy in 2006) is a symmetric
measurable function W: [0,1]?> — [0, 1].

FACTS:

@ Each finite graph can be represented as a graphon.

@ The space of graphons, with the so called cut metric, is a metric
compactification of the space of finite graphs.
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More general random graphs

G(n, W) i random graph introduced by Lovdsz and Szegedy:
e we sample n random independent points xi,...,x, € [0,1]
o the vertex set is {1,...,n}

@ i and j are connected by an edge with probability W(x;, x;)
NOTE: If W = p a.e. then G(n, W) = G(n, p).

W(G(n, W)) oo the order of the largest clique in G(n, W)
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The clique number (normalized by log n) is not continuous with respect to
the cut metric.

Let £ : N — N be such that f(n) — oo but 22 — 0.

logn

Gy ..... n-vertex f(n)-partite Turdn graph

w(Gn) _ f(n)

logn — logn

@ On one hand, we have — 0.

@ On the other hand, the graph G, has (3) — f(n)(@) ~ ”72 edges, and
so the sequence {G,}%2; converges to the constant graphon W = 1.

CONCLUSION: When examining the clique number w(G(n, W)), we
cannot straightforwardly use the cut metric.
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Our main result

Suppose that essinf W > 0. Then a.a.s.

w(G(n, W)) = (1 +0(1)) - w(W) - logn,

where

. 20413 e
(W) = p{ffh o )).heL([O,l]),hZO}.

v

In the supremum above, it suffices to range only over characteristic
functions, i.e.

. 2)\(A)? _
k(W) = p{foAIog(l/W(x,y))'AC [0,1], A\(A) > o} .
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Our main result

Recall:
Suppose that essinf W > 0. Then a.a.s.
w(G(n,W)) = (1+o(1)) - k(W) -logn, (1)
where
_ 2\(A)? _
"= p{foAlog(l/W(x,y» ACBA A= 0} |

If k(W) = +oo then (1) reads as w(G(n, W)) > log n.

NOTE: If W = p a.e. then r(W) = m-
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Heuristics of the proof

Let [0,1] = h Uk and p11, p12, P22 € (0,1).
Consider the the 2-step graphon W: [0,1]? — [0, 1] defined by

pin if x,y € I,
W(x,y) =< po ifx,yebh,
p1> otherwise.

OUR TASK: For every ¢ > 0, decide whether there typically exists a clique
of order clog n in G(n, W).

So let us fix ¢ > 0.
D G the number of cliques of order clogn in G(n, W)

..... the number of cliques in G(n, W) consisting of a log n vertices
represented in /1 and «ay log n vertices represented in |
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First moment argument

We have
E[X,] = > E[Yoee]

a1,022>0
a1tarx=c
ag log n, ap log n €Ng
This sum has only a ©(log n)-many summands, so we can expect that
e E[X,] = +00 &  Jag,an: E[Y;V?] = +oo,

e E[X,] -0 <& Vai,ax: E[Y;*?] = 0.

Let us write 81 = A(h) and 2 = A(k). Then for every g, ay we have

E[Y?l’az]z< 51” )( ﬁzn >p§1|2°gn) (a2|20gn) (X1O¢2|0g2n

p p
ailogn/ \azlogn 22 12

~ exp ( log? O‘il aé| |
~exp|logn|al+ax+ 5 ogp11 + > og p22 + a1 log p1o .
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First moment argument

Recall:

aqlogn aog logn
E[Y;,ll’aQ] ~ < Bln >< ,82” >p§112 )p§222 )p?£a2|0g2n

ailogn/ \azlogn

~ exp [ log® O‘il ‘i%| |
~exp|log®n|alr+ax+ 5 ogpi1 + > og p22 + a1 log p12 .

NOTE: The right hand side does not depend on the values of 31, 5.

It follows that whether E[Y;""*?] — 0 or E[Y;"*?] — 400 depends on the
sign of

1
o1t ozt (aflog p11 + a3 log p2o + iz log p1o + asas log o) -
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First moment argument

CONCLUSION: We try to maximize ag + ap (where a1, az > 0) with
respect to the condition

1
a1 + oz + 5 (a% log p11 + a% log p22 + a1 log p12 + apag log p12) >0.

In case of a general graphon W, we substitute summation by integration,
so we try to maximize ||f||1 (where f € L1([0,1]), f > 0) with respect to
the condition

r(f, W) ::/f(x)+;//f(x)f(y)log W(x,y) >0.
X xJy

In this way, we get an alternative formula for x(W):

k(W) =sup{|fl.: f € L}([0,1]), f >0, ['(f,W) >0} J

Martin Dolezal (MU AV) Cliques in random graphs 5.11.2015 11 /14



First and second moment argument

By the previous arguments, we can determine whether E[X,] — 0 or
E[X,] — +o0.

1. If E[X,] — 0 then by Markov's inequality, there are a.a.s. no cliques of
order c.

2. If E[X,;] — +o00o then we would like to use the second moment
argument.

To do this, we need to verify that E[X,]? = (1 + o(1))E[X?].

This is straightforeard in case of a constant graphon W (i.e. in case of the
Erdés—Rényi random graph) but it does not hold in general!
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Second moment argument

SOLUTION: We find A C [0, 1] such that the subgraphon U := W [axa
of W has the following properties:

o k(U) =~ k(W),

@ the second moment argument works for the subgraphon U.

It follows that a.a.s., the random graph G(n, U) contains a clique of order
clogn.

It is easy to conclude that the same is true for G(n, W).
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The End
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