Biologia plantarum 2019, 63:365-370 | DOI: 10.32615/bp.2019.042

The effects of gibberellic acid on Allium cepa root tip meristematic cells

B. Tütünoğlu1, Ö. Aksoy1,*, R. Özbek2, F. Uçkan1
1 Department of Biology, Faculty of Science and Literature, University of Kocaeli, Kocaeli, 41380, Turkey
2 Fraunhofer Institute for Molecular Biology and Applied Ecology, Department of Bioresources, Giessen, 35394, Germany

Gibberellic acid (GA) is a natural plant growth regulator (PGR) which stimulates germination, vegetative growth, flowering, and fruit formation. However, when high concentrations of GA are used, it inhibits plant growth and development and causes abnormalities in the plant tissue. In our study, we determined the effects of different concentrations of GA on Allium cepa L. var. cepa roots. Increasing concentrations of GA (50 - 5 000 mg dm-3) were used in A. cepa root growth inhibition tests. Further, random amplified polymorphic DNA technique was used for determination of possible genotoxic effects of 600 - 1200 mg dm-3 GA on A. cepa root tips. Our findings show cytotoxic and genotoxic effects of these concentrations of GA and indicate that the difference among control and treatment groups were statistically significant.

Keywords: genomic template stability, growth inhibition test, mitotic index, onion, RAPD

Accepted: January 9, 2019; Prepublished online: January 9, 2019; Published: January 19, 2019Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Tütünoğlu, B., Aksoy, Ö., Özbek, R., & Uçkan, F. (2019). The effects of gibberellic acid on Allium cepa root tip meristematic cells. Biologia plantarum63(1), 365-370. doi: 10.32615/bp.2019.042.
Download citation

Supplementary files

Download fileTUTU5896Suppl.pdf

File size: 2.03 MB

References

  1. Abass, M.H., Al-Utbi, S.D., Al-Samir, E.A.R.H.: Genotoxicity assessment of high concentrations of 2,4-D, NAA and Dicamba on date palm callus (Phoenix dactylifera L.) using protein profile and RAPD markers. - J. Genet. Engn. Biotechnol. 15: 287-295, 2017. Go to original source...
  2. Abdelmigid, H.M.: Risk assessment of food coloring agents on DNA damage using RAPD markers. - Open Biotechnol. J. 3: 96-102. 2009. Go to original source...
  3. Agarwal, M., Shrivastava, N., Padh, H.: Advances in molecular marker techniques and their applications in plant sciences. - Plant Cell Rep. 27: 617-631, 2008. Go to original source...
  4. Aksoy, Ö., Deveci A.: The investigation of the cytotoxic effects of some pesticides on soybean (Glycine max L.). - Cytologia 77: 475-483, 2012. Go to original source...
  5. Aksoy, Ö., Erbulucu, T., Özen, F., Deveci, A.: Genetic variation in critically endangered plant Amsonia orientalis Decne. - J. Biodiver. Environ. Sci. 3: 44-53. 2013.
  6. Atienzar, F.A., Jha, A.N.: The random amplified polymorphic DNA (RAPD) assay and related techniques applied to genotoxicity and carcinogenesis studies: a critical review. - Mutat. Res. Genet. Toxicol. 613: 76-102, 2006. Go to original source...
  7. Atienzar, F.A., Veiner, P., Jha, A.N., Depledge, M.H.: Evaluation of the random amplified polymorphic DNA (RAPD) assay for the detection of DNA damage and mutations. - Mutat. Res. Genet. Toxicol. 521: 151-163, 2002. Go to original source...
  8. Boğa, A., Binokay, S., Sertdemir, Y.: The toxicity and teratogenicity of gibberellic acid (GA3) based on the frog embryo teratogenesis assay - Xenopus (FETAX). - Turk. J. Biol. 33: 181-188, 2009.
  9. Chauhan, L.K.S., Saxena, P.N., Gupta, S.K.: Cytogenetic effects of cypermethrin and fenvalerate on the root meristem cells of Allium cepa. - Environ. exp. Bot. 42: 181-189, 1999. Go to original source...
  10. Celik, A., Unyayar, S., Cekic, F.O., Güzel, A.: Micronucleus frequency and lipid peroxidation in Allium sativum root tip cells treated with gibberellic acid and cadmium. - Cell Biol. Toxicol. 24: 159-164, 2008. Go to original source...
  11. Cenkci, S., Ciğerci, Ġ.H., Yildiz, M., Ozay, C., Bozdağ, A., Terzi, H.: Lead contamination reduces chlorophyll biosynthesis and genomic template stability in Brassica rapa L. - Environ. exp. Bot. 67: 467-473, 2010. Go to original source...
  12. Cenkci, S., Yildiz, M., Ciğerci, I.H., Konuk, M., Bozdağ, A.: Toxic chemicals-induced genotoxicity detected by random amplified polymorphic DNA (RAPD) in bean (Phaseolus vulgaris L.) seedlings. - Chemosphere 76: 900-906, 2009. Go to original source...
  13. Fincher, G.B.: Molecular and cellular biology association with endosperm mobilization in germination cereal grains. - Annu. Rev. Plant. Physiol. 40: 305-346, 1989. Go to original source...
  14. Finkelstein, R., Reeves, W., Ariizumi, T., Steber, C.: Molecular aspects of seed dormancy. - Annu. Rev. Plant Biol. 59: 387-415, 2008. Go to original source...
  15. Gómez-Cadenas, A., Zentella, R., Walker-Simmons, M.K., Ho, T.H.: Gibberellin/abscisic acid antagonism in barley aleurone cells: site of action of the protein kinase PKABA1 in relation to gibberellin signaling molecules. - Plant Cell 13: 667-679, 2001. Go to original source...
  16. Karl, J.O., Turgeon, R.: Sieve elements and companion cells traffic control centers of the phloem.- Plant Cell. 11: 739-750, 1999.
  17. Karssen, C.M.: Hormonal regulation of seed development, dormancy and germination studied by genetic control. - In: Kigel, J., Golili, G. (ed.): Seed Development and Germination. Pp. 17-33. Marcel Dekker, New York 1995.
  18. Karssen, C.M., Zagorski, S., Kepczynski, J., Groot, S.P.C.: Key role for endogenous gibberellins in the control of seed germination. - Ann. Bot. 63: 71-80, 1989. Go to original source...
  19. Kocaçalişkan, İ.: Plant Physiology. Dumlupinar University, Faculty of Arts and Sciences Publications, Kütahya 2003.
  20. Majer, B.J., Grummt, T., Uhi, M., Knasmuller, S.: Use of plant assay for the detection of genotoxins in the aquatic environment. - Acta. Hydrochem. Hydrobiol. 33: 45-55, 2005. Go to original source...
  21. Nei, M.: Genetic distance between populations. - Amer. Natur. 106: 283-292, 1978.
  22. Özen, F., Aka, G.E., Aksoy, Ö.: Genetic diversity and conservation strategies of some Lilium candidum L. populations in Turkey. - Bangladesh J. Bot. 45: 133-141, 2016.
  23. Rucińska, R., Waplak, S., Gwóźdź, E.A.: Free radical formation and activity of antioxidant enzymes in lupin roots exposed to lead. - Plant Physiol. Biochem. 37: 187-194, 1999. Go to original source...
  24. Seo, M., Nambara, E., Choi, G., Yamaguchi, S.: Interaction of light and hormone signals in germinating seeds. - Plant mol. Biol. 69: 463-472, 2009. Go to original source...
  25. Sharma, A.D., Thakur, M., Rana, M., Singh, K.: Effect of Plant growth hormones and abiotic stresses on germination, growth and phosphatate activities in Sorghum biocolor (L.) Moench seeds. - Afr. J. Biotechnol. 3: 308-312, 2004.
  26. Soliman, M.I., Ghoneam, G.T.: The mutagenic potentialities of some herbicides using Vicia faba as a biological system. - Biotechnology 3: 140-154, 2004.
  27. Tuluce, Y., Celik, I.: Influence of subacute and subchronic treatment of abcisic acid and gibberellic acid on serum marker enzymes and erythrocyte and tissue antioxidant defense systems and lipid peroxidation in rats. - Pestic. Biochem. Physiol. 86: 85-92, 2006. Go to original source...
  28. Uçkan, F., Tüven, A., Er, A., Ergin, E.: Effects of gibberellic acid on biological parameters of the larval endoparasitoid Apanteles galleriae (Hymenoptera: Braconidae). - Ann. Entomol. Soc. Amer. 101: 593-597, 2008. Go to original source...
  29. Ueguchi-Tanaka, M., Fujisawa, Y., Kobayashi, M., Ashikari, M., Iwasaki, Y., Kitano, H.: Rice dwarf mutant d1, which is defective in the alpha subunit of the heterotrimeric G protein, affects gibberellin signal transduction. - Proc. nat. Acad. Sci. USA 97: 38-43, 2000. Go to original source...
  30. Yamauchi, Y., Ogawa, M., Kuwahara, A., Hanada, A., Kamiya, Y., Yamaguchi, S.: Activation of gibberellin biosynthesis and response pathways by low temperature during imbibition of Arabidopsis thaliana seeds. - Plant Cell 16: 367-78, 2004. Go to original source...
  31. Williams, J., Kubelik, A. R., Livak, K. J.: DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. - Nucl. Acids Res. 18: 6531-6535, 1990. Go to original source...