Biologia plantarum 44:263-267, 2001 | DOI: 10.1023/A:1010207610974

Growth and Water Relations in Mycorrhizal and Nonmycorrhizal Pinus Halepensis Plants in Response to Drought

A. Morte1, G. Díaz1, P. Rodríguez2,3, J.J. Alarcón3, M.J. Sánchez-Blanco3
1 Dpto. Biologia Vegetal, Facultad de Biología, Universidad de Murcia, Murcia, Spain
2 Instituto Nacional de Ciencias Agrícolas, San José de las Lajas, La Habana, Cuba
3 Dpto. Riego y Salinidad, Centro de Edafología y Biología Aplicada del Segura (CSIC), Murcia, Spain

Mycorrhizal and nonmycorrhizal Pinus halepensis plants were subjected to water stress by withholding irrigation for four months and then rehydrated for 30 d. Water stress affected plants growth and mycorrhizal association was unable to avoid the effects of drought on plant growth. However, when irrigation was re-established the increase in height, number of shoots, total dry mass, and chlorophyll content in the mycorrhizal plants were greater than in non-mycorrhizal plants. The decrease in soil water content decreased the leaf water potential, leaf pressure potential and stomatal conductance. These decreases were higher for nonmycorrhizal than for mycorrhizal plants, indicating that the mycorrhizal fungi permit a higher water uptake from the dry soils. The total content of inorganic solutes was not changed by presence of mycorrhizae.

Keywords: chlorophyll; dry mass; ectomycorrhizal fungi; fresh mass; pine; osmotic potential; pressure potential; stomatal conductance; water potential
Subjects: chlorophylls, water stress, rehydration; ectomycorrhizal fungi, drought; mycorrhizae, drought effect; osmotic potential, mycorrhizae, drought effect; pine; Pinus halepensis; pressure potential, mycorrhizae, drought effect; rehydration after water stress; stomatal conductance, water stress; water potential, mycorrhizae, drought effect

Published: June 1, 2001Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Morte, A., Díaz, G., Rodríguez, P., Alarcón, J.J., & Sánchez-Blanco, M.J. (2001). Growth and Water Relations in Mycorrhizal and Nonmycorrhizal Pinus Halepensis Plants in Response to Drought. Biologia plantarum44(2), 263-267. doi: 10.1023/A:1010207610974.
Download citation

References

  1. Augé, R.M., Brown, M.S., Bethlenfalvay, G.J., Stodola, A.J.W.: Stomatal response of mycorrhizal cowpea and soybean to short-term osmotic stress.-New Phytol. 120: 117-25, 1992. Go to original source...
  2. Augé, R.M., Schekel, K.A., Wample, R.L.: Osmotic adjustment in leaves of VA mycorrhizal and non mycorrhizal rose plants in response to drought stress.-Plant Physiol. 82: 765-770, 1986. Go to original source...
  3. Augé, R.M., Schekel, K.A., Wample, R.L.: Rose leaf elasticity changes in response to mycorrhizal colonization and drought acclimatation.-Physiol. Plant. 70: 175-182, 1987. Go to original source...
  4. Bryla, D.R., Duniway, J.M.: Growth, phosphorus uptake, and water relations of sunflower and wheat infected with an arbuscular mycorrhizal fungus.-New Phytol. 136: 581-590, 1997. Go to original source...
  5. Duan, X., Neuman, D.S., Reiber, J.M., Green, C.D., Saxton, A.M. Auge, R.M.: Mycorrhizal influence on hydraulic and hormonal factors involved in the control of stomatal conductance during drought.-J. exp. Bot. 47: 1541-1550, 1996. Go to original source...
  6. Ebel, R.C., Duan, X., Still, D.W., Augé, R.M.: Xylem sap abscisic acid concentration and stomatal conductance of mycorrhizal Vigna unguiculata in drying soil.-New Phytol. 135: 755-761, 1997. Go to original source...
  7. Emadian, S.F., Newton, R.J.: Growth enhancement of lobolly pine (Pinus taeda L.) seedlings with silicon.-J. Plant Physiol. 134: 98-103, 1989. Go to original source...
  8. Fernández, J.A., Niell, F.X., Lucena, J.: A rapid and sensitive automated determination of phosphate in natural waters.-Limmol. Oceanogr. 30: 227-230, 1985. Go to original source...
  9. Fitter, A.H.: Water relations of red clover Trifolium pratense L. as affected by VA mycorrhizal infection and phosphorus supply before and during drought.-J. exp. Bot. 3: 595-603, 1988. Go to original source...
  10. Funkhouser, E. A., Cairney, J., Artlip, T.S., Chang, S., Dias, M.A., Newton, R.J.: Cellular and molecular responses to water deficit stress in woody crops.-In: Pessarakli, M. (ed.): Handbook of Plant and Crop Stress. Pp. 347-362. Marcel Dekker, New York 1993.
  11. Gucci, R., Xiloyannis, C., Flore, J.A.: Gas exchange parameters water relations and carbohydrate partitioning in leaves of field-grown Prunus domestica following fruit removal.-Physiol. Plant. 83: 497-505, 1991. Go to original source...
  12. Harley, J.L., Smith, D.E.: Mycorrhizal Symbiosis.-Academic Press, London 1983.
  13. Inskeep, W.P., Bloom, P.R.: Extinction coefficients of chlorophyll a and b in N,N-dimethylformamide and 80 % acetone.-Plant. Physiol. 77: 483-485, 1985. Go to original source...
  14. Joly, R.J., Zaerr, J.B.: Alteration of cell-wall water content and elasticity in Douglas-fir during periods of water deficit.-Plant Physiol. 83: 418-422, 1987. Go to original source...
  15. Marx, D.H.: The influence of ectotrophic mycorrhizal fungi on the resistence of pine roots to pathogenic infections. I. Antagonism of ectomycorrhizal fungi to root pathogenic fungi and soil bacteria.-Phytopathology 59: 153-163, 1969.
  16. Meier, C.E., Newton, R.J., Puryear, J.D., Sen, S.: Physiological responses of lobolly pine (Pinus taeda L.) seedlings to drought stress: osmotic adjustement and tissue elasticity.-J. Plant Physiol. 140: 754-760, 1992. Go to original source...
  17. Newton, R.J., Puryear, J.D., Sen, S.: Water status of lobolly pine (Pinus taeda L.) callus.-Plant Cell Organ Tissue Cult. 16: 3-13, 1989. Go to original source...
  18. Nguyen, A., Lamant, A.: Variation in growth and osmotic regulation of roots of water-stressed maritime pine (Pinus pinaster Ait) proveances.-Tree Physiol. 5: 123-133, 1989. Go to original source...
  19. Pallardy, S.G. Čermák, J., Ewers, F.W., Kaufmann, M.R., Parker, W.C., Sperry, J.S.: Water transpor dynamic in trees and stands.-In: Smith, W.K., Hinckley, W.K. (ed.): Resource Physiology of Conifers: Acquisition, Allocation and Utilization. Pp. 301-389. Academic Press, London 1995.
  20. Sands, R., Mulligan, D.R.: Water and nutrient dynamics and tree growth.-Forest. Ecol. Manage. 30: 91-111, 1990. Go to original source...
  21. Scholander, P.F., Hammel, H.T., Bradstreet, E.D., Hemingsen, E.A.: Sap pressure in vascular plants.-Science 148: 339-346, 1965. Go to original source...
  22. Seiler, J.R., Cazell, B.H.: Influence of water stress on physiology and growth of red spruce seedlings.-Tree Physiol. 6: 69-77, 1990. Go to original source...
  23. Subramanian, K.S., Charest, C., Dwyer, L.M., Hamilton, R.I.: Arbuscular mycorrhizas and water relations in maize under drought stress at tasseling.-New Phytol. 129: 643-650, 1995. Go to original source...
  24. Villar-Salvador, P., Ocaña, L., Peñuelas, J., Carrasco, I.: Effect of water stress conditioning on the water relations, root growth capacity, and the nitrogen and non-structural carbohydrate concentration of Pinus halepensis Mill. (Aleppo pine) seedlings.-Amer. Forests 56: 459-465, 1999. Go to original source...
  25. Walker, R.F., West, D.C., McLaughlin, S.B., Amundsen, C.C.: Growh, xylem pressure potential, and nutrient absorption of loblolly pine on a reclaimed surface mine as affected by an induced Pisolithus tinctorius infection.-Forest. Sci. 35: 569-581, 1989.
  26. Walker, R.F., West, D.C., McLaughlin, S.B.: Pisolitus tinctorius ectomycorrhizae reduce moisture stress of Virginia pine on southern Appalachiancoal spoil.-In: Proc. Seventh North American Forest Biology Workshop. Pp. 374-383. University of Kentucky, Lexington 1982.