Biologia plantarum 2016, 60:635-644 | DOI: 10.1007/s10535-016-0639-x

Protein as a sole source of nitrogen for in vitro grown tobacco plantlets

H. Synková1, V. Hýsková2, K. Garčeková2, S. Křížová2, H. Ryšlavá2,*
1 Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague, Czech Republic
2 Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic

We tested the capability of plants to utilize protein as the exclusive source of nitrogen. The aim of this study was to find out how such a nutrition affected plantlet growth, photosynthetic performance, and N assimilation metabolism in tobacco (Nicotiana tabacum L., cv. Petit Havana SR1) grown in vitro. Plantlets grown in a casein-supplemented (CA) medium were compared to plantlets grown in a complete Murashige-Skoog (MS) medium, plantlets grown in an ammonium-deficient medium (N1), or plantlets grown in a nitrate-reduced medium (N2). In addition, the plantlets were grown in the presence or absence of 1.5 % (m/v) saccharose as an additional carbon source. Casein, similarly as inorganic N limitation, reduced generally plantlet growth, whereas no significant effects were observed on photosynthetic parameters evaluated by chlorophyll a fluorescence. Although addition of saccharose stimulated the plantlet growth particularly in the MS, it showed a rather negative influence both on the growth and on the photochemical efficiency of photosystem II in the plantlets grown in the CA and N1. The activities of enzymes involved in N assimilation, such as nitrate reductase (NR) and glutamine synthetase (GS), were lower in the plantlets grown in the CA, N1, and N2, both in leaves and in roots. On the other hand, glutamate synthase and glutamate dehydrogenase were employed by the plantlets grown in the CA. The presence of saccharose in the growth medium stimulated mainly NR and GS activities in the MS grown plantlets, whereas enzyme activities of the plantlets grown on the N1, N2, and CA were not significantly influenced. We proved that the tobacco plantlets can utilize casein as the sole source of N particularly during their photoautotrophic cultivation. Contrary to positive effects of photomixotrophic nutrition for the MS grown plantlets, exogenous sugar seemed to diminish the ability of the casein-supplemented plantlets to utilize efficiently the additional C source.

Keywords: ammonium; casein; chlorophyll fluorescence; nitrate; photosynthesis
Subjects: in vitro culture; casein; ammonium; growth; chlorophyll a fluorescence; nitrogen metabolism; tobacco
Species: Nicotiana tabacum

Received: August 6, 2015; Revised: December 1, 2015; Accepted: January 5, 2016; Published: December 1, 2016Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Synková, H., Hýsková, V., Garčeková, K., Křížová, S., & Ryšlavá, H. (2016). Protein as a sole source of nitrogen for in vitro grown tobacco plantlets. Biologia plantarum60(4), 635-644. doi: 10.1007/s10535-016-0639-x.
Download citation

Supplementary files

Download filebpl-201604-0004_S1.pdf

File size: 324.77 kB

References

  1. Adamczyk, B., Godlewski, M., Zimny, J., Zimny, A.: Wheat (Triticum aestivum) seedlings secrete proteases from the roots and, after protein addition, grow well on medium without inorganic nitrogen. - Plant Biol. 10: 718-724, 2008. Go to original source...
  2. Adamczyk, B., Smolander, A., Kitunen, V., Godlewski, M.: Proteins as nitrogen source for plants: a short story about exudation of proteases by plant roots. - Plant Signal. Behav. 5: 817-819, 2010. Go to original source...
  3. Chen, L.S., Cheng, L.L.: Both xanthophyll cycle-dependent thermal dissipation and the antioxidant system are upregulated in grape (Vitis labrusca L. cv. Concord) leaves in response to N limitation. - J. exp. Bot. 54: 2165-2175, 2003a. Go to original source...
  4. Chen, L.S., Cheng, L.L.: Carbon assimilation and carbohydrate metabolism of 'Concord' grape (Vitis labrusca L.) leaves in response to nitrogen supply. - J. Soc. hort. Sci. 128: 754-760, 2003b. Go to original source...
  5. Coruzzi, G.M., Zhou, L.: Carbon and nitrogen sensing and signaling in plants: emerging 'matrix effects'. - Curr. Opin. Plant Biol. 4: 247-253, 2001. Go to original source...
  6. Cruz, J.L., Mosquim, P.R., Pelacani, C.R., Araujo, W.L., DaMatta, F.M.: Effects of nitrate nutrition on nitrogen metabolism in cassava. - Biol. Plant. 48: 67-72, 2004. Go to original source...
  7. Debouba, M., Gouia, H., Valadier, M.H., Ghorbel, M.H., Suzuki, A.: Salinity-induced tissue-specific diurnal changes in nitrogen assimilatory enzymes in tomato seedlings grown under high or low nitrate medium. - Plant Physiol. Biochem. 44: 409-419, 2006. Go to original source...
  8. Dubois, F., Terce-Laforgue, T., Gonzalez-Moro M.B., Estavillo, J.M., Sangwan, R., Gallais, A., Hirel, B.: 2003. Glutamate dehydrogenase in plants: is there a new story for an old enzyme? - Plant Physiol. Biochem. 41: 565-576, 2003. Go to original source...
  9. Eick, M., Stohr, C.: Proteolysis at the plasma membrane of tobacco roots: biochemical evidence and possible roles. - Plant Physiol. Biochem. 47: 1003-1008, 2009. Go to original source...
  10. Farrell, M., Hill, P.W., Wanniarachchi, S.D., Farrar, J., Bardgett, R.D., Jones, D.L.: Rapid peptide metabolism: A major component of soil nitrogen cycling? - Global Biogeochem. Cy. 25, doi: 10.1029/2010GB003999, 2011. Go to original source...
  11. Forde, B.G.: Local and long-range signaling pathways regulating plant responses to nitrate. - Annu. Rev. Plant Biol. 53: 203-224, 2002. Go to original source...
  12. Forde, B.G., Lea, P.J.: Glutamate in plants: metabolism, regulation, and signalling. - J. exp. Bot. 58: 2339-2358, 2007. Go to original source...
  13. Foyer, C.H., Noctor, G., Lelandais, M., Lescure, J.C., Valadier, M.H., Boutin, J.P., Horton, P.: Short-term effects of nitrate, nitrite and ammonium assimilation on photosynthesis, carbon partitioning and protein phosphorylation in maize. - Planta 192: 211-220, 1994. Go to original source...
  14. Gajewska, E., Sklodowska, M.: Nickel-induced changes in nitrogen metabolism in wheat shoots. - J. Plant Physiol. 166: 1034-1044, 2009. Go to original source...
  15. Gruffman, L., Jamtgard, S., Nasholm, T.: Plant nitrogen status and co-occurrence of organic and inorganic nitrogen sources influence root uptake by Scots pine seedlings. - Tree Physiol. 34: 205-213, 2014. Go to original source...
  16. Hill, P.W., Marsden, K.A., Jones, D.L.: How significant to plant N nutrition is the direct consumption of soil microbes by roots? - New Phytol. 199: 948-955, 2013. Go to original source...
  17. Komarova, N.Y., Thor, K., Gubler, A., Meier S., Dietrich D., Weichert A., Suter Grotemeyer M., Tegeder M., Rentsch D.: AtPTR1 and AtPTR5 transport dipeptides in planta. - Plant Physiol. 148: 856-869, 2008. Go to original source...
  18. Kraiser, T., Gras, D.E., Gutierrez, A.G., Gonzalez, B., Gutierrez, R.A.: A holistic view of nitrogen acquisition in plants. - J. exp. Bot. 62: 1455-1466, 2011. Go to original source...
  19. Krapp, A., David, L.C., Chardin, C., Girin T., Marmagne A., Leprince A.S., Chaillou S., Ferrario-Méry S., Meyer C., Daniel-Vedele F.: Nitrate transport and signalling in Arabidopsis. - J. exp. Bot. 65: 789-798, 2014. Go to original source...
  20. Lambeck, I.C., Fischer-Schrader, K., Niks, D., Roeper, J., Chi, J.C., Hille, R., Schwarz, G.: Molecular mechanism of 14-3-3 protein-mediated inhibition of plant nitrate reductase. - J. biol. Chem. 287: 4562-4571, 2012. Go to original source...
  21. Li, M., Li, C.H., Allen, A., Stanley, C.A., Smith, T.J.: The structure and allosteric regulation of glutamate dehydrogenase. - Neurochem. Int. 59: 445-455, 2011. Go to original source...
  22. Lonhienne, T.G.A., Trusov, Y., Young, A., Rentsch, D., Nasholm, T., Schmidt, S., Paungfoo-Lonhienne, C.: Effects of externally supplied protein on root morphology and biomass allocation in Arabidopsis. - Sci. Rep. 4, doi:10.1038/srep05055, 2014. Go to original source...
  23. Manchenko, G.P.: A Handbook of Detection of Enzymes on Electrophoretic Gels. 1st Ed. - CRC Press, London - Tokyo 1994.
  24. Masclaux-Daubresse, C., Reisdorf-Cren, M., Pageau, K., Lelandais, M., Grandjean, O., Kronenberger, J., Valadier, M.H., Feraud, M., Jouglet, T., Suzuki, A.: Glutamine synthetase - glutamate synthase pathway and glutamate dehydrogenase play distinct roles in the sink-source nitrogen cycle in tobacco. - Plant Physiol. 140: 444-456, 2006. Go to original source...
  25. Medici, A., Krouk, G.: The primary nitrate response: a multifaceted signalling pathway. - J. exp. Bot. 65: 5567-5576, 2014. Go to original source...
  26. Miller, A.J., Fan, X.R., Orsel, M., Smith, S.J., Wells, D.M.: Nitrate transport and signalling. - J. exp. Bot. 58: 2297-2306, 2007. Go to original source...
  27. Murashige, T., Skoog, F.: A revised medium for rapid growth and bio assays with tobacco tissue cultures. - Physiol. Plant. 15: 473-497, 1962. Go to original source...
  28. Nasholm, T., Kielland, K., Ganeteg, U.: Uptake of organic nitrogen by plants. - New Phytol. 182: 31-48, 2009. Go to original source...
  29. Paungfoo-Lonhienne, C., Lonhienne, T.G., Rentsch, D., Robinson N, Christie M, Webb R.I., Gamage H.K., Carroll B.J., Schenk P.M., Schmidt S.: Plants can use protein as a nitrogen source without assistance from other organisms. - Proc. nat. Acad. Sci. USA 105: 4524-4529, 2008. Go to original source...
  30. Paungfoo-Lonhienne, C., Visser, J., Lonhienne, T.G.A., Schmidt S.: Past, present and future of organic nutrients. - Plant Soil 359: 1-18, 2012. Go to original source...
  31. Pospisilova, J., Synkova, H., Haisel, D., Batkova, P.: Effect of abscisic acid on photosynthetic parameters during ex vitro transfer of micropropagated tobacco plantlets. - Biol. Plant. 53: 11-20, 2009. Go to original source...
  32. Pospisilova, J., Synkova, H., Haisel, D., Semoradova, S.: Acclimation of plantlets to ex vitro conditions: effects of air humidity, irradiance, CO2 concentration and abscisic acid (a review). - Acta Horticult. 748: 29-38, 2007. Go to original source...
  33. Pratelli, R., Pilot, G.: Regulation of amino acid metabolic enzymes and transporters in plants. - J. exp. Bot. 65: 5535-5556, 2014. Go to original source...
  34. Purnell, M.P., Botella, J.R.: Tobacco isoenzyme 1 of NAD(H)- dependent glutamate dehydrogenase catabolizes glutamate in vivo. - Plant Physiol. 143: 530-539, 2007.
  35. Rentsch, D., Schmidt, S., Tegeder, M.: Transporters for uptake and allocation of organic nitrogen compounds in plants. - FEBS Lett. 581: 2281-2289, 2007. Go to original source...
  36. Romero-Puertas, M.C., Rodriguez-Serrano, M., Sandalio, L.M.: Protein S-nitrosylation in plants under abiotic stress: an overview. - Front Plant Sci. 4, doi: 10.3389/fpls.2013.00373, 2013. Go to original source...
  37. Ruffel, S., Gojon, A., Lejay, L.: Signal interactions in the regulation of root nitrate uptake. - J. exp. Bot. 65: 5509-5517, 2014. Go to original source...
  38. Schmidt, S., Nasholm, T., Rentsch, D.: Organic nitrogen. - New Phytol. 203: 29-31, 2014. Go to original source...
  39. Stoelken, G., Simon, J., Ehlting, B., Rennenberg, H.: The presence of amino acids affects inorganic N uptake in nonmycorrhizal seedlings of European beech (Fagus sylvatica). - Tree Physiol. 30: 1118-1128, 2010. Go to original source...
  40. Sweby, D.L., Huckett, B.I., Watt, M.P.: Effects of nitrogen nutrition on salt-stressed Nicotiana tabacum var. Samsun in vitro plantlets. - J. exp. Bot. 45: 995-1008, 1994. Go to original source...
  41. Tegeder, M.: Transporters for amino acids in plant cells: some functions and many unknowns. - Curr. Opin. Plant Biol. 15: 315-321, 2012. Go to original source...
  42. Thornton, B., Osborne, S.M., Paterson, E., Cash, P.: A proteomic and targeted metabolomic approach to investigate change in Lolium perenne roots when challenged with glycine. - J. exp. Bot. 58: 1581-1590, 2007. Go to original source...
  43. Ticha, I., Cap, F., Pacovska, D., Hofman, P., Haisel, D., Capkova, V., Schafer, C.: Culture on sugar medium enhances photosynthetic capacity and high light resistance of plantlets grown in vitro. - Physiol. Plant. 102: 155-162, 1998. Go to original source...
  44. Tschoep, H., Gibon, Y., Carillo, P., Armengaud P., Szecowka M., Nunes-Nesi A., Fernie A.R., Koehl K., Stitt M.: Adjustment of growth and central metabolism to a mild but sustained nitrogen-limitation in Arabidopsis. - Plant Cell Environ 32: 300-318, 2009. Go to original source...
  45. Van Kooten, O., Snel, J.F.H.: The use of chlorophyll fluorescence nomenclature in plant stress physiology. - Photosynth. Res. 25: 147-150, 1990. Go to original source...
  46. Wang, X., Tang, D., Huang, D.: Proteomic analysis of pakchoi leaves and roots under glycine-nitrogen conditions. - Plant Physiol. Biochem. 75: 96-104, 2014. Go to original source...
  47. Wang, Y.Y., Hsu, P.K., Tsay, Y.F.: Uptake, allocation and signaling of nitrate. - Trends Plant Sci. 17: 458-467, 2012. Go to original source...
  48. Wang, Z.Q., Yuan, Y.Z., Ou, J.Q., Lin, Q.H., Zhang, C.F.: Glutamine synthetase and glutamate dehydrogenase contribute differentially to proline accumulation in leaves of wheat (Triticum aestivum) seedlings exposed to different salinity. - J. Plant Physiol. 164: 695-701, 2007. Go to original source...
  49. Warren, C.R.: Organic N molecules in the soil solution: what is known, what is unknown and the path forwards. - Plant Soil 375: 1-19, 2014. Go to original source...
  50. Xu, G.H., Fan, X.R., Miller, A.J.: Plant nitrogen assimilation and use efficiency. - Annu. Rev. Plant Biol. 63: 153-182, 2012. Go to original source...
  51. Yu, M.D., Lamattina, L., Spoel, S.H., Loake, G.J.: Nitric oxide function in plant biology: a redox cue in deconvolution. - New Phytol. 202: 1142-1156, 2014. Go to original source...
  52. Zhang, H.M., Rong, H.L., Pilbeam, D.: Signalling mechanisms underlying the morphological responses of the root system to nitrogen in Arabidopsis thaliana. - J. exp. Bot. 58: 2329-2338, 2007. Go to original source...
  53. Zheng, Z.-L.: Carbon and nitrogen nutrient balance signaling in plants. - Plant Signal. Behav. 4: 584-591, 2007.