Biologia plantarum 2017, 61:529-539 | DOI: 10.1007/s10535-016-0674-7

Glucose-6-phosphate dehydrogenase plays critical role in artemisinin production of Artemisia annua under salt stress

J. W. Wang1,*, H. Tian1,2, X. Yu1, L. P. Zheng3
1 College of Pharmaceutical Sciences, Soochow University, Suzhou, P.R. China
2 Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming, P.R. China
3 Department of Horticulture, School of Architecture, Soochow University, Suzhou, P.R. China

Artemisinin, a natural sesquiterpenoid isolated from Artemisia annua L., is regarded as the most efficient drug against malaria in the world. Artemsinin production in NaCl-treated A. annua seedlings and its relationships with the glucose-6-phosphate dehydrogenase (G6PDH) activity and generation of H2O2 and nitric oxide (NO) were investigated. Results revealed that artemisinin content in the seedlings was increased by 79.3 % over the control after 1-month treatment with 68 mM NaCl. The G6PDH activity was enhanced in the presence of NaCl together with stimulated generation of H2O2 and NO. Application of 1.0 mM glucosamine (GlcN), an inhibitor of G6PDH, blocked the increase of NADPH oxidase and nitrate reductase (NR) activities, as well as H2O2 and NO production in A. annua seedlings under the salt stress. The induced H2O2 was found to be involved in the upgrading gene expression of two key enzymes in the later stage of artemisinin biosynthetic pathway: amorphadiene synthase (ADS) and amorpha-4,11-diene monooxygenase (CYP71AV1). The released NO being attributed mainly to the increase of NR activity, negatively interacted with H2O2 production and enhanced gene expression of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR). Inhibition of NO generation partly blocked NaCl-induced artemisinin accumulation, and NO donor strongly rescued the decreased content of artemisinin caused by GlcN. These results suggest that G6PDH could play a critical role in NaCl-induced responses and artemisinin biosynthesis in A. annua.

Keywords: hydrogen peroxide; NADPH oxidase; nitrate reductase; nitric oxide; reactive oxygen species
Subjects: glucose-6-phosphate dehydrogenase; artemisinin; hydrogen peroxide; NADPH oxidase; nitrate reductase; nitric oxide; reactive oxygen species
Species: Artemisia annua

Received: December 28, 2015; Revised: July 12, 2016; Accepted: July 14, 2016; Published: September 1, 2017Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Wang, J.W., Tian, H., Yu, X., & Zheng, L.P. (2017). Glucose-6-phosphate dehydrogenase plays critical role in artemisinin production of Artemisia annua under salt stress. Biologia plantarum61(3), 529-539. doi: 10.1007/s10535-016-0674-7.
Download citation

References

  1. Aftab, T., Khan, M.M.A., Da Silva, J.A.T., Idrees, M., Naeem, M.: Role of salicylic acid in promoting salt stress tolerance and enhanced artemisinin production in Artemisia annua L. - J. Plant Growth Regul. 30: 425-435, 2011. Go to original source...
  2. Bertea, C.M., Freije, J.R., Van der Woude, H., Verstappen, F.W., Perk, L., Marquez, V., De Kraker, J.W., Posthumus, M.A., Jansen, B.J., de Groot, A., Franssen, M.C., Bouwmeester, H.J.: Identification of intermediates and enzymes involved in the early steps of artemisinin biosynthesis in Artemisia annua. - Planta med. 71: 40-47, 2005. Go to original source...
  3. Besson-Bard, A., Pugin, A., Wendehenne, D.: New insights into nitric oxide signaling in plants. - Annu. Rev. Plant Biol. 59: 21-39, 2008. Go to original source...
  4. Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. - Anal. Biochem. 72: 248-254, 1976. Go to original source...
  5. Brown, G.D., Sy, L.K.: In vivo transformations of dihydroartemisinic acid in Artemisia annua plants. - Tetrahedron 60: 1139-1159, 2004. Go to original source...
  6. Esposito, S., Carillo, P., Carfagna, S.: Ammonium metabolism stimulation of glucose-6P dehydrogenase and phosphoenolpyruvate carboxylase in young barley roots. - J. Plant Physiol. 153: 61-66, 1998. Go to original source...
  7. Fan, H., Guo, S., Jiao, Y., Zhang, R., Li, J.: Effects of exogenous nitric oxide on growth, active oxygen species metabolism, and photosynthetic characteristics in cucumber seedlings under NaCl stress. - Front. Agr. China 1: 308-314, 2007. Go to original source...
  8. Gibon, Y., Larher, F.: Cycling assay for nicotinamide adenine dinucleotides: NaCl precipitation and ethanol solubilization of the reduced tetrazolium. - Anal. Biochem. 25: 153-157, 1997. Go to original source...
  9. Ju, H.W., Koh, E.J., Kim, S.H., Kim, K.I., Lee, H., Hong, S.W.: Glucosamine causes overproduction of reactive oxygen species, leading to repression of hypocotyl elongation through a hexokinase-mediated mechanism in Arabidopsis. - J. Plant Physiol. 166: 203-212, 2009. Go to original source...
  10. Kjaer, A., Verstappen, F., Bouwmeester H., Ivarsen, E., Fretté, X., Christensen, L.P., Grevsen, K., Jensen, M.: Artemisinin production and precursor ratio in full grown Artemisia annua L. plants subjected to external stress. - Planta 237: 955-966, 2013. Go to original source...
  11. Kletzien, R.F., Harris, P.K., Foellmi, L.A.: Glucose-6-phosphate dehydrogenase: a "housekeeping" enzyme subject to tissue-specific regulation by hormones, nutrients, and oxidant stress. - FASEB J. 8: 174-181, 1994. Go to original source...
  12. Liu, J., Wang, X.M., Hu, Y.F., Hu, W., Bi, Y.R.: Glucose-6-phosphate dehydrogenase plays a pivotal role in tolerance to drought stress in soybean roots. - Plant Cell Rep. 32: 415-429, 2013. Go to original source...
  13. Liu, Y.G., Wu, R.R., Wan, Q., Xie, G.Q., Bi, Y.R.: Glucose-6-phosphate dehydrogenase plays a pivotal role in nitric oxide-involved defense against oxidative stress under salt stress in red kidney bean roots. - Plant Cell Physiol. 48: 511-522, 2007. Go to original source...
  14. Lu, D., Dong, J.F., Jin, H.H., Sun, L.N., Xu, X.B., Zhou, T., Zhu, Y., Xu, M.J.: Nitrate reductase-mediated nitric oxide generation is essential for fungal elicitor-induced camptothecin accumulation of Camptotheca acuminata suspension cell cultures. - Appl. Microbiol. Biotechnol. 90: 1073-1081, 2011. Go to original source...
  15. Małolepsza, U., Różalska, S.: Nitric oxide and hydrogen peroxide in tomato resistance: Nitric oxide modulates hydrogen peroxide level in o-hydroxyethylorutin-induced resistance to Botrytis cinerea in tomato. - Plant Physiol. Biochem. 43, 623-635, 2005. Go to original source...
  16. Marchese, J.A., Ferreira, J.F., Rehder, V.L., Rodrigues, O.: Water deficit effect on the accumulation of biomass and artemisinin in annual wormwood (Artemisia annua L., Asteraceae). - Braz. J. Plant Physiol. 22: 1-9, 2010. Go to original source...
  17. Martinez, C., Montillet, J.L., Bresson, E., Agnel, J.P., Dai, G.H., Daniel, J.F., Geiger, J.P., Nicole, M.: Apoplastic peroxidase generates superoxide anions in cells of cotton cotyledons undergoing the hypersensitive reaction to Xanthomonas campestris pv. malvacearum race 18. - Mol. Plant Microbe interact. 11: 1038-1047, 1998. Go to original source...
  18. Murphy, M.E., Noack, E.: Nitric oxide assay using hemoglobin method. - Methods Enzymol. 233: 240-250, 1994. Go to original source...
  19. Nemoto, Y., Sasakuma, T.: Specific expression of glucose-6-phosphate dehydrogenase (G6PDH) gene by salt stress in wheat (Triticum aestivum L.). - Plant Sci. 158: 53-60, 2000. Go to original source...
  20. Nguyen, K.T., Arsenault, P.R., Weathers, P.J.: Trichomes + roots + ROS = artemisinin: regulating artemisinin biosynthesis in Artemisia annua L. - In Vitro cell. dev. Biol. Plant 47: 329-338, 2011. Go to original source...
  21. Olofsson, L., Engström, A., Lundgren, A., Brodelius, P.E.: Relative expression of genes of terpene metabolism in different tissues of Artemisia annua L. - BMC Plant Biol. 11: 45, 2011. Go to original source...
  22. Orozco-Cárdenas, M., Ryan, C.A.: Nitric oxide negatively modulates wound signaling in tomato plants. - Plant Physiol. 130: 487-493, 2002. Go to original source...
  23. Pan, W.S., Zheng, L.P., Tian, H., Li, W.Y., Wang, J.W.: Transcriptome responses involved in artemisinin production in Artemisia annua L. under UV-B radiation. - J. Photochem. Photobiol. B: Biol. 140: 292-300, 2014. Go to original source...
  24. Prasad, A., Kumar, D., Anwar, M., Singh, D.V., Jain, D.C.: Response of Artemisia annua L. to soil salinity. - J. Herbs Spices med. Plants. 5: 49-55, 1998. Go to original source...
  25. Qian, Z.H., Gong, K., Zhang, L., Lv, J.B., Jing, F.Y., Wang, Y.Y., Guan, S.B., Wang, G.F., Tang, K.X.: A simple and efficient procedure to enhance artemisinin content in Artemisia annua L. by seeding to salinity stress. - Afr. J. Biotechnol. 6: 1410-1413, 2010.
  26. Qureshi, M.I., Israr, M., Abdin, M.Z., Iqbal, M.: Responses of Artemisia annua L. to lead and salt-induced oxidative stress. Environ. exp. Bot. 53: 185-193, 2005.
  27. Rizhsky, L., Liang, H., Shuman, J., Shulaev, V., Davletova, S., Mittler, R.: When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. - Plant Physiol. 134: 1683-1696, 2004. Go to original source...
  28. Sangwan, N.S., Kumar, R., Srivastava, S., Kumar, A., Gupta, A., Sangwan, R.S.: Recent developments on secondary metabolite biosynthesis in Artemisia annua L. - J. Plant Biol. 37: 1-24, 2010.
  29. Shetty, P., Atallah, M.T., Shetty, K.: Effects of UV treatment on the proline-linked pentose phosphate pathway for phenolics and L-DOPA synthesis in dark germinated Vicia faba. - Process Biochem. 37:1285-1295, 2002. Go to original source...
  30. Siddiqui, M.H., Al-Whaibi, M.H., Basalah, M.O.: Role of nitric oxide in tolerance of plants to abiotic stress. - Protoplasma 248, 447-455, 2011. Go to original source...
  31. Šindelář, L., Šindelářová, M.: Correlation of viral RNA biosynthesis with glucose-6-phosphate dehydrogenase activity and host resistance. - Planta 215: 862-869, 2002.
  32. Towler, M.J., Weathers, P.J.: Evidence of artemisinin production from IPP stemming from both the mevalonate and the nonmevalonate pathways. - Plant Cell Rep. 26: 2129-2136, 2007. Go to original source...
  33. Valderrama, R., Corpas, F.J., Carreras, A., Fernández-Ocaña, A., Chaki, M., Luque, F., Gómez-Rodríguez, M.V., Colmenero-Varea, P., del Río, L.A., Barroso, J.B.: Nitrosative stress in plants. - FEBS Lett. 581: 453-461, 2007. Go to original source...
  34. Velikova, V., Yordanov, I., Edreva, A.: Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. - Plant Sci. 151: 59-66, 2000. Go to original source...
  35. Wang, J.W., Wu, J.Y.: Involvement of nitric oxide in elicitorinduced defense responses and secondary metabolism of Taxus chinensis cells. - Nitric Oxide 11: 298-306, 2004. Go to original source...
  36. Wang, J.W., Zheng, L.P., Zhang, B., Zou, T. Stimulation of artemisinin synthesis by combined cerebroside and nitric oxide elicitation in Artemisia annua hairy roots. - Appl. Microbiol. Biotechnol. 85: 285-292, 2009. Go to original source...
  37. Wang, X.M., Ma, Y.Y., Huang, C.H., Wan, Q., Li, N., Bi, Y.R.: Glucose-6-phosphate dehydrogenase plays a central role in modulating reduced glutathione levels in reed callus under salt stress. - Planta 227: 611-623, 2008. Go to original source...
  38. Wu, S., Qi, J., Zhang, W., Liu, S., Xiao, F., Zhang, M., Xu, G., Zhao, W., Shi, M., Pang, Y., Shen, H., Yang, Y.: Nitric oxide regulates shikonin formation in suspension-cultured Onosma paniculatum cells. - Plant Cell Physiol. 50, 118-128, 2009. Go to original source...
  39. Yu, L.J., Lan, W.Z., Chen, C., Yang, Y.: Glutathione levels control glucose-6-phosphate dehydrogenase activity during elicitor-induced oxidative stress in cell suspension cultures of Taxus chinensis. - Plant Sci. 167: 329-335, 2004. Go to original source...
  40. Yu, L.J., Lan, W.Z., Chen, C., Yang, Y., Sun, Y.P.: Importance of glucose-6-phosphate dehydrogenase in taxol biosynthesis in Taxus chinensis cultures. - Biol. Plant. 49: 265-268, 2005. Go to original source...
  41. Zago, E., Morsa, S., Dat, J.F., Alard, P., Ferrarini, A., Inzé, D., Delledonne, M., Breusegem, F.V.: Nitric oxide- and hydrogen peroxide-responsive gene regulation during cell death induction in tobacco. - Plant Physiol. 141: 404-411, 2006. Go to original source...
  42. Zhang, B., Zheng, L.P., Li, W.Y., Wang, J.W. Stimulation of artemisinin production in Artemisia annua hairy roots by Ag-SiO2 core-shell nanoparticles. - Curr. Nanosci. 9: 363-370, 2013a. Go to original source...
  43. Zhang, B., Zheng, L.P., Wang, J.W.: Nitric oxide elicitation for secondary metabolite production in cultured plant cells. - Appl. Microbiol. Biotechnol. 93: 455-466, 2012. Go to original source...
  44. Zhang, L., Liu, J., Wang, X.M, Bi, Y.R.: Glucose-6-phosphate dehydrogenase acts as a regulator of cell redox balance in rice suspension cells under salt stress. - Plant Growth Regul. 69: 139-148, 2013b. Go to original source...
  45. Zhao, J., Fujita, K., Sakai, K.: Reactive oxygen species, nitric oxide, and their interactions play different roles in Cupressus lusitanica cell death and phytoalexin biosynthesis. - New Phytol. 175, 215-229, 2007. Go to original source...
  46. Zhao, L.Q., Zhang, F., Guo, J.K., Yang, Y.L., Li, B.B., Zhang, L.X.: Nitric oxide functions as a signal in salt resistance in the calluses from two ecotypes of reed. - Plant Physiol. 134: 849-857, 2004. Go to original source...
  47. Zhao, M.G., Tian, Q.Y., Zhang, W.H.: Nitric oxide synthasedependent nitric oxide production is associated with salt tolerance in Arabidopsis. - Plant Physiol. 144: 206-217, 2007. Go to original source...
  48. Zhao, S.S., Zeng, M.Y.: [tle in English] Spektrometrische hochdruck-flüssigkeits-chromatographische (HPLC) Untersuchungen zur Analytik von Qinghaosu. - Planta med. 51: 233-237, 1985. [In German] Go to original source...
  49. Zheng, L.P., Zhang, B., Zou, T., Chen, Z.H., Wang, J.W.: Nitric oxide interacts with reactive oxygen species to regulate oligosaccharide-induced artemisinin biosynthesis in Artemisia annua hairy roots. - J. med. Plants Res. 4: 758-765, 2010.