Biologia plantarum 61:557-564, 2017 | DOI: 10.1007/s10535-017-0703-1

Physiological and molecular responses to drought and salinity in soybean

H. R. Liu1, G. W. Sun2, L. J. Dong1, L. Q. Yang1, S. N. Yu1, S. L. Zhang1,*, J. F. Liu1,*
1 College of Life Sciences, Hebei University, Baoding, P.R. China
2 Tieling Academy of Agricultural Sciences, Tieling, P.R. China

Drought and salinity are severe environmental stresses and limit soybean growth. In this study, a comparative analysis of physiological and molecular responses of two soybean (Glycine max L.) genotypes to these stresses was carried out. Plants of drought-tolerant genotype RD (cv. FD92) and sensitive genotype SD (cv. Z1303) were exposed to 15 % (m/v) PEG 6000, which simulated drought stress, or 150 mM NaCl. The RD plants maintained larger leaf area and higher net photosynthetic rate, chlorophyll content, stomatal conductance, and relative water content compared with the SD plants. Leaf proline content increased under both stresses more in RD than in SD. The drought tolerance of RD plants was also correlated with greater antioxidant activity and lower content of hydrogen peroxide and malondialdehyde under stress conditions. Amounts of abscisic acid, jasmonic acid, and salicylic acid under stress increased to a greater extent in RD than in SD plants. At the molecular level, the effects of 20-d stress treatments were manifested by relatively higher expression of drought- or salt-related genes: GmP5CS, GmDREB1a, GmGOLS, GmBADH, and GmNCED1 in RD plants than in SD plants. These results form the basis for understanding the mechanisms of the drought- and salt-stress tolerance in soybean.

Keywords: abscisic acid; chlorophyll; drought- and salt-tolerance; gene expression; Glycine max; jasmonic acid; malondialdehyde; photosynthetic rate; salicylic acid; stomatal conductance
Subjects: drought; salinity; abscisic acid; jasmonic acid; salicylic acid; chlorophyll; malondialdehyde; photosynthetic rate; stomatal conductance; relative water content; proline; peroxidase; superoxide dismutase; soybean
Species: Glycine max

Received: March 7, 2016; Revised: September 17, 2016; Accepted: October 14, 2016; Published: September 1, 2017Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Liu, H.R., Sun, G.W., Dong, L.J., Yang, L.Q., Yu, S.N., Zhang, S.L., & Liu, J.F. (2017). Physiological and molecular responses to drought and salinity in soybean. Biologia plantarum61(3), 557-564. doi: 10.1007/s10535-017-0703-1.
Download citation

Supplementary files

Download filebpl-201703-0017_S1.pdf

File size: 72.81 kB

References

  1. Ahuja, I., Devos, R.C.H., Bones, A.M., Hall, R.D.: Plant molecular stress responses face climate change. - Trends Plant Sci. 15: 664-674, 2010. Go to original source...
  2. Aimar, D., Calafat, M., Andrade, A.M., Carassay, L., Bouteau, F., Abdala, G., Molas, M.L.: Drought effects on the early development stages of Panicum virgatum L.: cultivar differences. - Field Crops Res. 120: 262-270, 2011.
  3. Alexieva, V., Sergiev, I., Mapelli, S., Karanov, E.: The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. - Plant Cell Environ. 24: 1337-1344, 2001. Go to original source...
  4. Al-Karaki, G.N.: Nursery inoculation of tomato with arbuscular mycorrhizal fungi and subsequent performance under irrigation with saline water. - Sci. Hort. 109: 1-7, 2006. Go to original source...
  5. Arnon, D.T.: Copper enzymes in isolated chloroplasts. Polyphenaloxidase in Beta vulgaris. - Plant Physiol. 24: 1-15, 1949. Go to original source...
  6. Barrs, H.D., Weatherley, P.E.: A re-examination of the relative turgidity technique for estimating water deficits in leaves. - Aust. J. biol. Sci. 15: 413-428, 1962. Go to original source...
  7. Bates, L.S., Waldren, R.P., Teare, I.D.: Rapid determination of free proline for water-stress studies. - Plant Soil 39: 205-207, 1973. Go to original source...
  8. Beyer, W.F., Jr., Fridovich, I.: Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. - Anal. Biochem. 161: 559-566, 1987. Go to original source...
  9. Chaparzadeh, N., Mehrnejad, F.: Oxidative markers in five Iranian alfalfa (Medicago sativa L.) cultivars under salinity stress. - Iran J. Plant Physiol. 3: 793-799, 2013.
  10. Durgbanshi, A.: Simultaneous determination of multiple phytohormones in plant extracts by liquid chromatography electrospray tandem mass spectrometry. - J. Agr. Food Chem. 53: 8437-8442, 2005. Go to original source...
  11. Fan, X.D., Wang, J.Q., Yang, N., Dong, Y.Y., Liu, L., Wang, F.W., Wang, N., Chen, H., Liu, W.C., Sun, Y.P., Wu, J.Y., Li, H.Y.: Gene expression profiling of soybean leaves and roots under salt, saline-alkali and drought stress by high-throughput Illumina sequencing. - Gene 512: 392-402, 2013. Go to original source...
  12. Hameed, A., Bibi, N., Akhter, J., Iqbal, N.: Differential changes in antioxidants, proteases, and lipid peroxidation in flag leaves of wheat genotypes under different levels of water deficit conditions. - Plant Physiol. Biochem. 49: 178-185, 2011. Go to original source...
  13. Heath, I.L., Packer, L.: Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. - Arch. Biochem. Biophys. 125: 189-198. 1968. Go to original source...
  14. Hoque, M.A., Banu, M.N.A., Okuma, E.: Exogenous proline and glycine betaine increase NaCl-induced ascorbate-glutathione cycle enzyme activities, and proline improves salt tolerance more than glycinebetaine in tobacco Bright Yellow-2 suspension-cultured cells. - J Plant Physiol. 164: 1457-1468, 2007. Go to original source...
  15. Jagendorf, A.T., Takabe, T.: Inducers of glycinebetaine synthesis in barley. - Plant Physiol. 127: 1827-1835, 2001.
  16. Khanna-Chopra, R., Selote, D.S.: Acclimation to drought stress generates oxidative stress tolerance in drought-resistant than-susceptible wheat cultivar under field conditions. Environ. - J. exp. Bot. 60: 276-283, 2007. Go to original source...
  17. Kubala, S., Wojtyla, L., Quinet, M., Lechowska, K., Lutts, S., Garnczarska, M.: Enhanced expression of the proline synthesis gene P5CSA in relation to seed osmopriming improvement of Brassica napus germination under salinity stress. - J. Plant Physiol. 183: 1-12, 2015. Go to original source...
  18. Kumar, N., Pal, M., Singh, A., Sairam, R.K., Srivastava, G.C.: Exogenous proline alleviates oxidative stress and increase vase life in rose (Rosa hybrida L. 'Grand Gala). - Scientia Hort. 127: 79-85, 2010. Go to original source...
  19. Leopold, A.C., Toenniessen, R.P.W.: Salinity Tolerance in Plants. - Wiley, New York 1984.
  20. Moghaieb, R.E.A., Saneoka, H., Fujita, K.: Effect of salinity on osmotic adjustment, glycinebetaine accumulation and the betaine aldehyde dehydrogenase gene expression in two halophytic plants, Salicornia europaea and Suaeda maritima. - Plant Sci. 166:1345-1349, 2004. Go to original source...
  21. Molla, M.R., Ali, M.R., Hasanuzzaman, M., Al-Mamun, M.H., Ahmed, A., Nazim-Ud-Dowla, M.A.N., Rohman, M.M.: Exogenous proline and betaine-induced upregulation of glutathione transferase and glyoxalase in lentil (Lens culinaris) under drought stress. - Not. Bot. Hort. Agrobot. 42: 73-80, 2014. Go to original source...
  22. Mutava, R.N., Prince, K.S.J., Syed, N.H., Song, L., Valliyodan, B., Chen, W., Nguyen, H.T.: Understanding abiotic stress tolerance mechanisms in soybean: a comparative evaluation of soybean response to drought and flooding stress. - Plant Physiol. Biochem. 86: 109-120, 2015. Go to original source...
  23. Pandolfi, C., Mancuso, S., Shabala, S.: Physiology of acclimation to salinity stress in pea Pisum sativum. - Environ. exp. Bot. 84: 44-51, 2012. Go to original source...
  24. Pérez-Clemente, R.M., Vives, V., Zandalinas, S.I., López-Climent, M.F., Muñoz, V., Gómez-Cadenas, A.: Biotechnological approaches to study plant responses to stress. - Biomed. Res. Int. 2013: 654120, 2013. Go to original source...
  25. Pieterse, C.M.J., Leon-Reyes, A., Van der Ent, S., Van Wees, S.C.M.: Networking by small-molecule hormones in plant immolunity. - Nat. Chem. Biol. 5: 308-316, 2009. Go to original source...
  26. Porcel, R., Aroca, R., Ruiz-Lozano, J.M.: Salinity stress alleviation using arbuscular mycorrhizal fungi. - Agron. Sustain. Dev. 32: 181-200, 2012. Go to original source...
  27. Radhakrishnan, R., Lee, I.J.: Spermine promotes acclimation to osmotic stress by modifying antioxidant, abscisic acid, and jasmonic acid signals in soybean. - J. Plant Growth Regul. 32: 22-30, 2013. Go to original source...
  28. Schmittgen, T.D., Livak, K.J.: Analyzing real-time PCR data by the comparative CT method. - Nat. Protoc. 3: 1101-1108, 2008. Go to original source...
  29. Shabala, S., Cuin, T.A.: Potassium transport and plant salt tolerance. - Physiol. Plant. 133: 651-669, 2008. Go to original source...
  30. Stolf-Moreira, R., Medri, M.E., Neumaier, N., Lemos, N.G., Pimenta, J.A., Tobita, S., Brogin, R.L., Marcelino-Guimaraes, F.C., Oliveira, M.C.N., Farias, J.R., Abdelnoor, R.V., Nepomuceno, A.L.: Soybean physiology and gene expression during drought. - Genet. mol. Res. 9: 1946-1956, 2010.
  31. Thameur, A., Ferchichi, A., Lopez-Carbonell, M.: Quantification of free and conjugated abscisic acid in five genotypes of barley (Hordeum vulgare L.) under water stress conditions. - South Afr. J. Bot. 77: 222-228, 2011.
  32. Valladares, F., Pearcy, R.W.: Drought can be more critical in the shade than in the sun: a field study of carbon gain and photo-inhibition in a Californian shrub during a dry El Nino year. - Plant Cell Environ. 25: 749-759, 2002. Go to original source...
  33. Verbruggen, N., Hermans, C.: Proline accumulation in plants: a review. - Amino Acids 35: 753-759, 2008. Go to original source...
  34. Yamaguchi-Shinozaki, K., Shinozaki, K.: Organization of cis-acting regulatory elements in osmotic and cold stress-responsive promoters. - Trends Plant Sci. 10: 88-94, 2005. Go to original source...
  35. Yang, Y., Qi, M., Mei, C.: Endogenous salicylic acid protects rice plants from oxidative damage caused by aging as well as biotic and abiotic stress. - Plant J. 40: 909-919, 2004. Go to original source...