Biologia plantarum 2015, 59:106-114 | DOI: 10.1007/s10535-014-0465-y

Responses of two barley cultivars differing in their salt tolerance to moderate and high salinities and subsequent recovery

K. Kosová1,*, P. Vítámvás1, I. Hlaváčková2, M. O. Urban1, E. Vlasáková1, I. T. Prášil1
1 Department of Plant Genetics, Breeding and Crop Quality, Crop Research Institute, Prague, Czech Republic
2 Department of Biochemistry and Microbiology, Institute of Chemical Technology Prague, Prague, Czech Republic

Two barley (Hordeum vulgare L.) cultivars, Czech spring cv. Amulet and Syrian landrace Tadmor, were subject to different salinity treatments: 1) the NaCl concentration was gradually increased from 0 (the control) to either 100 (a moderate salt stress) or 300 mM NaCl (a high salt stress), 2) the NaCl concentration was increased directly either from 0 to 300 mM NaCl or from 100 to 300 mM NaCl, and 3) a recovery when all variants were transferred back to control conditions and cultivated for seven additional days before sampling. The following parameters were determined: water saturation deficit (WSD), osmotic potential (ψs), leaf proline content, maximum quantum yield of photosystem (PS) II photochemistry (measured as variable to maximum chlorophyll a fluorescence ratio, Fv/Fm), and relative accumulation of dehydrins (DHN). Both quantitative and qualitative differences in dehydrins were found between NaCl-treated Amulet and Tadmor. A principal component analysis (PCA) of all experiment data revealed a differential ability of Amulet and Tadmor to recover after the 300 mM NaCl treatments indicating better salt tolerance in Tadmor. Correlation analyses have shown statistically significant correlations between WSD, ψs, proline, and DHN.

Keywords: chlorophyll fluorescence; dehydrins; Hordeum vulgare; proline; osmotic potential; principal component analysis
Subjects: salt tolerance; relative water content; osmotic potential; proline; chlorophyll fluorescence; dehydrin; barley; principal component analysis
Species: Hordeum vulgare

Received: April 10, 2014; Revised: August 11, 2014; Accepted: August 12, 2014; Published: January 1, 2015Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Kosová, K., Vítámvás, P., Hlaváčková, I., Urban, M.O., Vlasáková, E., & Prášil, I.T. (2015). Responses of two barley cultivars differing in their salt tolerance to moderate and high salinities and subsequent recovery. Biologia plantarum59(1), 106-114. doi: 10.1007/s10535-014-0465-y.
Download citation

Supplementary files

Download filebpl-201501-0013_S1.pdf

File size: 170.55 kB

References

  1. Battaglia, M., Olvera-Carrillo, Y., Garciarrubio, A., Campos, F., Covarrubias, A.A.: The enigmatic LEA proteins and other hydrophilins. - Plant Physiol. 148: 6-24, 2008. Go to original source...
  2. Bose, J., Rodrigo-Moreno, A., Shabala, S.: ROS homeostasis in halophytes in the context of salinity stress tolerance. - J. exp. Bot. 65: 1241-1257, 2014. Go to original source...
  3. Bravo, L.A., Close, T.J., Corcuera, L.J., Guy, C.L.: Characterization of an 80-kDa dehydrin-like protein in barley responsive to cold acclimation. - Physiol. Plant. 106: 177-183, 1999. Go to original source...
  4. Brini, F., Hanin, M., Lumbreras, V., Irar, S., Pages, M., Masmoudi, K.: Functional characterization of DHN-5, a dehydrin showing a differential phosphorylation pattern in two Tunisian durum wheat (Triticum durum Desf.) varieties with marked differences in salt and drought tolerance. - Plant Sci. 172: 20-28, 2007. Go to original source...
  5. Caruso, G., Cavaliere, C., Guarino, C., Gubbiotti, R., Foglia, P., Lagana, A.: Identification of changes in Triticum durum L. leaf proteome in response to salt stress by two-dimensional electrophoresis and MALDI-TOF mass spectrometry. - Anal. bioanal. Chem. 391: 381-390, 2008. Go to original source...
  6. Chen, Z., Cuin, T.A., Zhou, M., Twomey, A., Naidu, B.P., Shabala, S.: Compatible solute accumulation and stressmitigating effects in barley genotypes contrasting in their salt tolerance. - J. exp. Bot. 58: 4245-4255, 2007. Go to original source...
  7. Choi, D.W., Zhu, B., Close, T.J.: The barley (Hordeum vulgare L.) dehydrin multigene family: sequences, allele types, chromosome assignments, and expression characteristics of 11 Dhn genes of cv. Dicktoo. - Theor. appl. Genet. 98: 1234-1247, 1999. Go to original source...
  8. Colmer, T.D., Flowers, T.J., Munns, R.: Use of wild relatives to improve salt tolerance in wheat. - J. exp. Bot. 57: 1059-1078, 2006. Go to original source...
  9. De Lacerda, C.F., Cambraia, J., Oliva, M.A., Ruiz, H.A., Prisco, J.T.: Solute accumulation and distribution during shoot and leaf development in two sorghum genotypes under salt stress. - Environ. exp. Bot. 49: 107-120, 2003. Go to original source...
  10. Flowers, T.J.: Improving crop salt tolerance. - J. exp. Bot. 55: 307-319, 2004. Go to original source...
  11. Hong, Z., Lakkineni, K., Zhang, Z., Verma, D.P.S.: Removal of feedback inhibition of Δ1-pyrroline-5-carboxylate synthetase results in increased proline accumualtion and protection of plants from osmotic stress. - Plant Physiol. 122: 1129-1136, 2000. Go to original source...
  12. Islam, S., Malik, A.I., Islam, A.K.M.R., Colmer, T.D.: Salttolerance in a Hordeum marinum-Triticum aestivum amphiploid, and its parents. - J. exp. Bot. 58: 1219-1229, 2007. Go to original source...
  13. Jiménez-Bremont, J.F., Becerra-Flora, A., Hernández-Lucero, E., Rodríguez-Kessler, M., Acosta-Gallegos, J.A., Ramírez-Pimentel, J.G.: Proline accumulation in two bean cultivars under salt stress and the effect of polyamines and ornithine. - Biol. Plant. 50: 763-766, 2006. Go to original source...
  14. Kim, D.W., Rakwal, R., Agrawal, G.K., Jung, Y.H., Shibato, J., Jwa, N.S., Iwahashi, Y., Iwahashi, H., Kim, D.H., Shim, I.S., Usui, K.: A hydroponic rice seedling culture model system for investigating proteome of salt stress in rice leaf. - Electrophoresis 26: 4521-4539, 2005. Go to original source...
  15. Kishor, P., Hong, Z., Miao, G.H., Hu, C., Verma, D.: Overexpression of [delta]-pyrroline-5-carboxylate synthatase increases proline production and confers osmotolerance in transgenic plants. - Plant Physiol. 108: 1387-1394, 1995. Go to original source...
  16. Kobayashi, F., Takumi, S., Nakata, M., Ohno, R., Nakamura, T., Nakamura, C.: Comparative study of the expression profiles of the Cor/Lea gene family in two wheat cultivars with contrasting levels of freezing tolerance. - Physiol. Plant. 120: 585-594, 2004. Go to original source...
  17. Kosová, K., Holková, L., Prášil, I.T., Prášilová, P., Bradáčová, M., Vítámvás, P., Čapková, V.: Expression of dehydrin 5 during the development of frost tolerance in barley (Hordeum vulgare). - J. plant Physiol. 165: 1142-1151, 2008. Go to original source...
  18. Kosová, K., Prášil, I.T., Vítámvás, P.: Role of dehydrins in plant stress response. - In Pessarakli, M. (ed.): Handbook of Plant and Crop Stress. 3rd Ed. Pp. 239-285. CRC Press, Taylor & Francis, Boca Raton 2010.
  19. Kosová, K., Vítámvás, P., Prášilová, P., Prášil, I.T.: Accumulation of WCS120 and DHN5 proteins in differently frost-tolerant wheat and barley cultivars grown under a broad temperature scale. - Biol Plant. 57: 105-112, 2013. Go to original source...
  20. Krause, G.H., Weis, E.: Chlorophyll fluorescence and photosynthesis: the basics. - Annu. Rev. Plant Physiol. Plant mol. Biol. 42: 313-349, 1991. Go to original source...
  21. Laemmli, U.K.: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. - Nature 277: 680-685, 1970. Go to original source...
  22. Larcher, W.: Physiological Plant Ecology. 4th Ed. - Springer-Verlag, Berlin - Heidelberg 2003.
  23. Lawlor, D.W.: Genetic engineering to improve plant performance under drought: physiological evaluation of achievements, limitations, and possibilities. - J. exp. Bot. 64: 83-108, 2013. Go to original source...
  24. Levitt, J.: Responses of plants to environmental stress. Chilling, freezing and high temperature stresses. 2nd Ed. - Academic Press, New York 1980.
  25. Lichtenthaler, H.K., Rinderle, U.: The role of chlorophyll fluorescence in the detection of stress conditions in plants. - Crit. Rev. anal. Chem. 19: 29-85, 1988. Go to original source...
  26. Munns, R.: Comparative physiology of salt and water stress. - Plant Cell Environ. 25: 239-250, 2002. Go to original source...
  27. Munns, R.: Genes and salt tolerance: bringing them together. - New Phytol. 167: 645-663, 2005. Go to original source...
  28. Munns, R., Tester, M.: Mechanisms of salinity tolerance. - Annu. Rev. Plant Biol. 59: 651-681, 2008. Go to original source...
  29. Ohno, R., Takumi, S., Nakamura, C.: Kinetics of transcript and protein accumulation of a low-molecular weight wheat LEA-D11 dehydrin in response to low temperature. - J. Plant Physiol. 160: 193-200, 2003. Go to original source...
  30. Ozturk, Z.N., Talamé, V., Deyholos, M., Michalowski, C.B., Galbraith, D.W., Gozukirmizi, N., Tuberosa, R., Bohnert, H.J.: Monitoring large-scale changes in transcript abundance in drought- and salt-stressed barley. - Plant mol. Biol. 48: 551-573, 2002. Go to original source...
  31. Prášil, I.T., Prášilová, P., Pánková, K.: The relationship between vernalization requirement and frost tolerance in substitution lines of wheat. - Biol. Plant. 49: 195-200, 2005.
  32. Rasoulnia, A., Bihamta, M.R., Peyghambari, S.A., Alizadeh, H., Rahnama, A.: Proteomic response of barley leaves to salinity. - Mol. Biol. Rep. 38: 5055-5063, 2011. Go to original source...
  33. Rizza, F., Pagani, D., Stanca, A.M., Cattivelli, L.: Use of chlorophyll fluorescence to evaluate the cold acclimation and freezing tolerance of winter and spring oats. - Plant Breed. 120: 389-396, 2001. Go to original source...
  34. Rorat, T.: Plant dehydrins - tissue location, structure and function. - Cell. mol. Biol. Lett. 11: 536-556, 2006. Go to original source...
  35. Serraj, R., Sinclair, T.R.: Osmolyte accumulation: can it really help increase crop yield under drought conditions? - Plant Cell Environ. 25: 333-341, 2002. Go to original source...
  36. Slavík, B.: Relationship between the osmotic potential of cell sap and the water saturation deficit during the wilting of leaf tissue. - Biol. Plant. 5: 258-264, 1963. Go to original source...
  37. Suprunova, T., Krugman, T., Fahima, T., Chen, G., Shams, I., Korol, A., Nevo, E.: Differential expression of dehydrin genes in wild barley, Hordeum spontaneum, associated with resistance to water deficit. - Plant Cell Environ. 27: 1297-1308, 2004. Go to original source...
  38. Thomashow, M.F.: Plant cold acclimation. Freezing tolerance genes and regulatory mechanisms. - Annu. Rev. plant Physiol. Plant mol. Biol. 50: 571-599, 1999. Go to original source...
  39. Tommasini, L., Svensson, J.T., Rodriguez, E.M., Wahid, A., Malatrasi, M., Kato, K., Wanamaker, S., Resnik, J., Close, T.J.: Dehydrin gene expression provides an indicator of low temperature and drought stress: transcriptome-based analysis of barley (Hordeum vulgare L.). - Funct. integr. Genomics 8: 387-405, 2008. Go to original source...
  40. Van Zee, K., Chen, F.Q., Hayes, P.M., Close, TJ., Chen, T.H.H.: Cold-specific induction of a dehydrin gene family member in barley. - Plant Physiol. 108: 1233-1239, 1995. Go to original source...
  41. Vítámvás, P., Kosová, K., Prášilová, P., Prášil, I.T.: Accumulation of WCS120 protein in wheat cultivars grown at 9 °C or 17 °C in relation to their winter survival. - Plant Breed. 129: 611-616, 2010 Go to original source...
  42. Vítámvás, P., Prášil, I.T.: WC S120 protein family and frost tolerance during cold acclimation, deacclimation and reacclimation of winter wheat. - Plant Physiol. Biochem. 46: 970-976, 2008. Go to original source...
  43. Voetberg, G., Stewart, C.R.: Steady state proline levels in salt-shocked barley leaves. - Plant Physiol. 76: 567-570, 1984. Go to original source...
  44. Walia, H., Wilson, C., Ismail, A.M., Close, T.J., Cui, X.: Comparing genomic expression patterns across plant species reveals highly diverged transcriptional dynamics in response to salt stress. - BMC Genomics 10: 398, 2009. Go to original source...
  45. Yamaguchi-Shinozaki, K., Shinozaki, K.: Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. - Annu. Rev. Plant Biol. 57: 781-803, 2006. Go to original source...
  46. Zhang, J., Nguyen, H.T., Blum, A.: Genetic analysis of osmotic adjustment in crop plants. - J. exp. Bot. 50: 291-302, 1999. Go to original source...
  47. Zhu, B., Choi, D.W., Fenton, R., Close, T.J.: Expression of the barley dehydrin multigene family and the development of freezing tolerance. - Mol. gen. Genet. 264: 145-153, 2000. Go to original source...
  48. Zhu, J.K.: Salt and drought stress signal transduction in plants. - Annu. Rev. Plant Biol. 53: 247-273, 2002. Go to original source...