Biologia plantarum 2013, 57:739-748 | DOI: 10.1007/s10535-013-0327-z

The involvement of auxin in root architecture plasticity in Arabidopsis induced by heterogeneous phosphorus availability

Q. Liu1, G. Q. Zhou1, F. Xu1, X. L. Yan1, H. Liao1, J. X. Wang1,*
1 College of Natural Resources and Environment, Root Biology Center, South China Agricultural University, Guangzhou, P.R. China

Homogeneous low phosphorus availability was reported to regulate root architecture in Arabidopsis via auxin, but the roles of auxin in root architecture plasticity to heterogeneous P availability remain unclear. In this study, we employed auxin biosynthesis-, transport- and signalling-related mutants. Firstly, we found that in contrast to low P (LP) content in the whole medium, primary root (PR) growth of Arabidopsis was partially rescued in the medium divided into two parts: upper with LP and lower with high P (HP) content or in the reverse arrangement. The down part LP was more effective to arrest PR growth as well as to decrease density of lateral roots (DLR) than the upper LP, and effects were dependent on polar auxin transport. Secondly, we verified that auxin receptor TIR1 was involved in the responses of PR growth and lateral root (LR) development to P supply and loss of function of TIR1 inhibited LR development. Thirdly, effects of heterogeneous P on LRD in the upper part of PR was dependent on PIN2 and PIN4, and in the down part on PIN3 and PIN4, whereas density of total LRs was dependent on auxin transporters PIN2 and PIN7. Finally, heterogeneous P availability altered the accumulation of auxin in PR tip and the expression of auxin biosynthesisrelated genes TAA1, YUC1, YUC2, and YUC4. Taken together, we provided evidences for the involvement of auxin in root architecture plasticity in response to heterogeneous phosphorus availability in Arabidopsis.

Keywords: auxin biosynthesis-related genes; lateral roots; PIN; primary root; TIR
Subjects: auxin; root architecture; phosphorus; growth; transgenic plants; mutants; auxin biosynthesis genes
Species: Arabidopsis thaliana

Received: January 29, 2011; Accepted: January 28, 2013; Published: December 1, 2013Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Liu, Q., Zhou, G.Q., Xu, F., Yan, X.L., Liao, H., & Wang, J.X. (2013). The involvement of auxin in root architecture plasticity in Arabidopsis induced by heterogeneous phosphorus availability. Biologia plantarum57(4), 739-748. doi: 10.1007/s10535-013-0327-z.
Download citation

References

  1. Arnaud, C., Bonnot, C., Desnos, T., Nussaume, L.: The root cap at the forefront. - Comp. rend. Biol. 333: 335-343, 2010. Go to original source...
  2. Blilou, I., Xu, J., Wildwater, M., Willemsen, V., Paponov, I., Friml, J., Heidstra, R., Aida, M., Palme, K., Scheres, B.: The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. - Nature 433: 39-44, 2005. Go to original source...
  3. Casimiro, I., Marchant, A., Bhalerao, R.P., Beeckman, T., Dhooge, S., Swarup, R., Graham, N., Inzé, D., Sandberg, G., Casero, P.J, Bennett, M.: Auxin transport promotes Arabidopsis lateral root initiation. - Plant Cell 13: 843-852, 2001. Go to original source...
  4. Cheng Y., Dai, X., Zhao, Y.: Auxin biosynthesis by the Yucca flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis. - Genes Dev. 20: 1790-1799, 2006. Go to original source...
  5. Dharmasiri, N., Dharmasiri, S., Estelle, M.: The F-box protein TIR1 is an auxin receptor. - Nature 435: 441-445, 2005a. Go to original source...
  6. Dharmasiri, N., Dharmasiri, S., Weijers, D., Lechner, E., Yamada, M., Hobbie, L., Ehrismann, J.S., Jürgens, G., Estelle, M.: Plant development is regulated by a family of auxin receptor F box proteins. - Dev. Cell 9: 109-119, 2005b. Go to original source...
  7. Eklund, D.M., Staldal, V., Valsecchi, I., Cierlik, I., Eriksson, C., Hiratsu, K., Ohme-Takagi, M,, Sundstrom, J.F., Thelander, M., Ezcurra, I., Sundberg, E.: The Arabidopsis thaliana STYLISH1 protein acts as a transcriptional activator regulating auxin biosynthesis. - Plant Cell 22: 349-363, 2010. Go to original source...
  8. Ferreira, P.C., Hemerly, A.S., Engler, J.D., Van Montagu, M., Engler, G., Inzé, D.: Developmental expression of the Arabidopsis cyclin gene cyc1At. - Plant Cell 6: 1763-1774, 1994. Go to original source...
  9. Friml, J., Benková, E., Blilou, I., Wisniewska, J., Hamann, T., Ljung, K., Woody, S., Sandberg, G., Scheres, B., Jürgens, G., Palme, K.: AtPIN4 mediates sink-driven auxin gradients and root patterning in Arabidopsis. - Cell 108: 661-673, 2002. Go to original source...
  10. Jain, A., Poling, M.D., Karthikeyan, A.S., Blakeslee, J.J., Peer, W.A., Titapiwatanakun, B., Murphy, A.S., Raghothama, K.G.: Differential effects of sucrose and auxin on localized phosphate deficiency-induced modulation of different traits of root system architecture in Arabidopsis. - Plant Physiol. 144: 232-247, 2007. Go to original source...
  11. Li, Z.X., Xu, C.Z., Li, K.P., Yan, S., Qu, X., Zhang, J.R.: Phosphate starvation of maize inhibits lateral root formation and alters gene expression in the lateral root primordium zone. - BMC Plant Biol. 12: 89, 2012. Go to original source...
  12. López-Bucio, J., Cruz-Ramírez, A., Herrera-Estrella, L.: The role of nutrient availability in regulating root architecture. - Curr. Opin. Plant Biol. 6: 280-287, 2003. Go to original source...
  13. López-Bucio, J., Hernández-Abreu, E., Sánchez-Calderón, L., Fernanda, M., Nieto-Jacobo, M.F., Simpson, J., Herrera-Estrella, L.: Phosphate availability alters architecture and causes changes in hormone sensitivity in the Arabidopsis root system. - Plant Physiol. 129: 244-256, 2002. Go to original source...
  14. López-Bucio, J., Hernández-Abreu, E., Sánchez-Calderón, L., Pérez-Torres, A., Rampey, R.A., Bartel, B., Herrera-Estrella, L.: An auxin transport independent pathway is involved in phosphate stress-induced root architectural alterations in Arabidopsis. Identification of BIG as a mediator of auxin in pericycle cell activation. - Plant Physiol. 137: 681-691, 2005. Go to original source...
  15. Lynch, J.: Root architecture and plant productivity. - Plant Physiol. 109: 7-13, 1995. Go to original source...
  16. Malamy, J.E., Benfey, P.N.: Organization and cell differentiation in lateral roots of Arabidopsis thaliana. - Development 124: 33-44, 1997.
  17. Marchant, A., Bhalerao, R., Casimiro, I., Eklöf, J., Casero, P.J., Bennett, M., Sandberg, G.: AUX1 promotes lateral root formation by facilitating indole-3-acetic acid distribution between sink and source tissues in the Arabidopsis seedling. - Plant Cell 14: 589-597, 2002. Go to original source...
  18. Mendes, A.F.S., Cidade, L.C., Otoni, W.C., Soares-Filho, W.S., Costa, M.G.C.: Role of auxins, polyamines and ethylene in root formation and growth in sweet orange. - Biol. Plant. 55: 375-378, 2011. Go to original source...
  19. Nacry, P., Canivenc, G., Müller, B., Azmi, A., Onckelen, H.V., Rossignol, M., Doumas, P.: A role for auxin redistribution in the responses of the root system architecture to phosphate starvation in Arabidopsis. - Plant Physiol. 138: 2061-2074, 2005. Go to original source...
  20. Okushima, Y., Fukaki, H., Onoda, M., Theologis, A., Tasaka, M.: ARF7 and ARF19 regulate lateral root formation via direct activation of LBD/ASL genes in Arabidopsis. - Plant Cell 19: 118-130, 2007. Go to original source...
  21. Paponov, I.A., Teale, W.D., Trebar, M., Blilou, I., Palme, K.: The PIN auxin efflux facilitators: evolutionary and functional perspectives. - Trends Plant Sci. 10: 170-177, 2005. Go to original source...
  22. Park, B.S., Sang, W.G., Song, J.T., Lee, B.H., Kim, J.H., Seo, H.S.: Auxin is involved in the regulation of leaf and root development by LAF1 under short day conditions. - Biol. Plant. 55: 647-652, 2011. Go to original source...
  23. Pérez-Torres, C.A., López-Bucio, J., Cruz-Ramírez, A., Ibarra-Laclette, E., Dharmasiri, S., Estelle, M., Herrera-Estrella, L.: Phosphate availability alters lateral root development in Arabidopsis by modulating auxin sensitivity via a mechanism involving the TIR1 auxin receptor. - Plant Cell 20: 3258-3272, 2008. Go to original source...
  24. Pothuluri, J.V., Kissel, D.E., Whitney, D.A., Thien, S.J.: Phosphorus uptake from soil layers having different soil test phosphorus levels. - Agron. J. 78: 991-994, 1986. Go to original source...
  25. Sánchez-Calderón, L., López-Bucio, J., Chacón-López, A., Cruz-Ramírez, A., Nieto-Jacobo, F., Dubrovsky, J.G., Herrera-Estrella, L.: Phosphate starvation induces a determinate developmental program in the roots of Arabidopsis thaliana. - Plant Cell Physiol. 46: 174-184, 2005. Go to original source...
  26. Stepanova, A.N., Robertson-Hoyt, J., Yun, J., Benavente, L.M., Xie, D.Y., Dolezal, K., Schlereth, A., Jürgens, G., Alonso, J.M.: TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. - Cell 133: 177-191, 2008. Go to original source...
  27. Svistoonoff, S., Creff, A., Reymond, M., Sigoillot-Claude, C., Ricaud, L., Blanchet, A., Nussaume, L. Desnos, T.: Root tip contact with low-phosphate media reprograms plant root architecture. - Nat. Genet. 39: 792-796, 2007. Go to original source...
  28. Tao, Y., Ferrer, J.L., Ljung, K., Pojer, F., Hong, F., Long, J.A., Li, L., Moreno, J.E., Bowman, M.E., Ivans, L.J., Cheng, Y., Lim, J., Zhao, Y., Ballaré, C.L., Sandberg, G., Noel, J.P., Chory, J.: Rapid synthesis of auxin via a new tryptophandependent pathway is required for shade avoidance in plants. - Cell 133: 164-176, 2008. Go to original source...
  29. Teale, W.D., Paponov, I.A., Palme, K.: Auxin in action: signaling, transport and the control of plant growth and development. - Nat. Rev. mol. cell. Biol. 7: 847-859, 2006. Go to original source...
  30. Ticconi, C.A., Delatorre, C.A., Lahner, B., Salt, D.E., Abel, S.: Arabidopsis pdr2 reveals a phosphate-sensitive checkpoint in root development. - Plant J. 37: 801-814, 2004. Go to original source...
  31. Vieten, A., Vanneste. S., Wisniewska, J., Benková, E., Benjamins, R., Beeckman, T., Luschnig, C., Friml, J.: Functional redundancy of PIN proteins is accompanied by auxin-dependent cross-regulation of PIN expression. - Development 132: 4521-4531, 2005. Go to original source...
  32. Williamson, L.C., Ribrioux, S., Fitter, A., Leyser, O.: Phosphate availability regulates root system architecture in Arabidopsis. - Plant Physiol. 126: 875-882, 2001. Go to original source...
  33. Woo, J., Macpherson, C.R., Liu, J., Wang, H., Kiba, T., Hannah, M., Wang, X.J., Bajic V.B., Chua, N.H.: The response and recovery of the Arabidopsis thaliana transcriptome to phosphate starvation. - BMC Plant Biol. 12: 62, 2012. Go to original source...