Biologia plantarum 2017, 61:453-462 | DOI: 10.1007/s10535-016-0672-9

Characterization of the high-affinity phosphate transporter PHT1;4 gene promoter of Arabidopsis thaliana in transgenic wheat

E. Peñaloza1,*, M. Santiago2, S. Cabrera2, G. Muñoz3, L. J. Corcuera1, H. Silva2
1 Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
2 Departamento de Producción Agrícola, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago, Chile
3 Centro de Biotecnología Gran Concepción, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Concepción, Chile

The root specificity and phosphate (Pi) deficiency responsiveness of high-affinity phosphate transporter (PHT1) genes point to their promoters as a sustainable system to drive Pi acquisition-related transgenes in plants. In this study, a 3-kb promoter of the AtPHT1;4 gene from Arabidopsis thaliana fused to the β-glucuronidase (GUS) reporter gene was biolistically introduced into wheat (Triticum aestivum L.) and functionally characterized in transgenic plants grown in hydroponics and in pots with soil under various Pi supply rates. From among 27 T1 progeny derived from 250 T0, four transgenic lines reached T3, with two of them showing detectable GUS activity in the roots of T4 plants. An unusually high number of transgene insertions characterized these transgenic lines, along with an irregular pattern of histochemical GUS staining and weak GUS activity. GUS expression driven by AtPHT1;4 was consistently higher under most assay conditions, as it was unaffected by 0 to 0.5 mM Pi in hydroponically grown plants, as well as by 16 to 20 mg(P) kg-1(soil) in potted plants. Raising the soil P up to or above 40 mg kg-1 significantly down-regulated the quantity of GUS transcripts. These results show that the responsiveness of the AtPHT1;4 promoter to Pi availability in transgenic wheat was restricted to soil-grown plants, which highlighted the relevance of the substrate and Pi supply rates in assessing molecular responses to Pi deficiency.

Keywords: GUS reporter gene; phosphate deficiency; Triticum aestivum
Subjects: phosphate transporter; transgenic plants; GUS reporter gene; phosphate deficiency; Southern blot; wheat
Species: Triticum aestivum; Arabidopsis thaliana

Received: December 2, 2015; Revised: June 9, 2016; Accepted: July 1, 2016; Published: September 1, 2017Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Peñaloza, E., Santiago, M., Cabrera, S., Muñoz, G., Corcuera, L.J., & Silva, H. (2017). Characterization of the high-affinity phosphate transporter PHT1;4 gene promoter of Arabidopsis thaliana in transgenic wheat. Biologia plantarum61(3), 453-462. doi: 10.1007/s10535-016-0672-9.
Download citation

Supplementary files

Download filebpl-201703-0006_S1.pdf

File size: 1.59 MB

References

  1. Ahmad, A., Maqbool, S.B., Hashsham, S.A., Sticklen, M.B.: Determination of cryIAb and cryIAc copy number in transgenic Basmati 370 rice (Oryza sativa L.) plants using real-time PCR and its comparison with Southern blot. - J. biol. Sci. 5: 282-288, 2005.
  2. Altpeter, F., Baisakh, N., Beachy, R., Bock, R., Capell, T., Christou, P., Daniell, H., Datta, K., Datta, S., Dix, P.J., Fauquet, C., Huang, N., Kohli, A., Mooibroek, H., Nicholson, L., Nguyen, T.T., Nugent, G., Raemakers, K., Romano, A., Nomers, D.A., Stoger, E., Taylor, N., Visser, R.: Particle bombardment and the genetic enhancement of crops: myths and realities. - Mol. Breed. 15: 305-327, 2005. Go to original source...
  3. Ames, B.N.: Assay of inorganic phosphate, total phosphate and phosphatases. - Methods Enzymol. 8: 115-118, 1966. Go to original source...
  4. Bahieldin, A., Eissa, H.F., Mahfouz, H.T., Dyer, W.E., Madkour, M.A., Qu, R.: Evidence for non-proteinaceous inhibitor(s) of β-glucuronidase in wheat (Triticum aestivum L.) leaf and root tissues. - Plant Cell Tissue Organ Cult. 82: 11-17, 2005. Go to original source...
  5. Bari, R., Pant, B.D., Stitt, M., Scheible, W.R.: PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants. - Plant Physiol. 141: 988-999, 2006. Go to original source...
  6. Brown, D.A., Clark, L.J., Howarth, J.R., Parmar, S., Hawkesford, M.J.: Mechanical impedance and nutrient acquisition in rice. - Plant Soil 280: 65-76, 2006. Go to original source...
  7. Burleigh, S.H., Harrison, M.J.: The down-regulation of Mt4-like genes by phosphate fertilization occurs systemically and involves phosphate translocation to the shoots. - Plant Physiol. 119: 241-248, 1999. Go to original source...
  8. Campillo, R., Hirzel, J., Jobet, C.: Fertilización del cultivo del trigo harinero [Fertilization of bread wheat crops]. - In: Hirzel, J. (ed.): Fertilización de Cultivos en Chile. Pp. 11-80. INIA, Santiago 2011.
  9. Chiou, T.J., Lin, S.I.: Signaling network in sensing phosphate availability in plants. - Annu. Rev. Plant Biol. 62: 185-206, 2011. Go to original source...
  10. Coelho, G., Carneiro, N., Karthikeyan, A., Raghothama, K., Schaffert, R., Brandão, R., Paiva, L., Souza, I., Alves, V., Imolesi, A., Carvalho, C., Carneiro, A.: A phosphate transporter promoter from Arabidopsis thaliana AtPHT1;4 gene drives preferential gene expression in transgenic maize roots under phosphorus starvation. - Plant mol. Biol. Rep. 28: 717-723, 2010. Go to original source...
  11. Davies, T.G.E., Ying, J., Xu, Q., Li, Z.S., Li, J., Gordon-Weels, R.: Expression analysis of putative high affinity phosphate transporters in Chinese winter wheat. - Plant Cell Environ. 25: 1325-1339, 2002. Go to original source...
  12. Day, C.D., Lee, E., Kobayashi, J., Holappa, L.D., Albert, H., Ow, D.W.: Transgene integration into the same chromosome location can produce alleles that express at a predictable level, or alleles that are differentially silenced. - Gene Dev. 14: 2869-2880, 2000. Go to original source...
  13. De Buck, S., Peck, I., Wilde, C.D., Marjanac, G., Nolf, J., De Paepe, A., Depicker, A.: Generation of single-copy T-DNA transformants in Arabidopsis by the CRE/loxP recombination-mediated resolution system. - Plant Physiol. 145: 1171-1182, 2007. Di Go to original source...
  14. Rienzo, J.A., Casanoves, F., Balzarini, M.G., Gonzalez, L., Tablada, M., Robledo, C.W.: InfoStat, Versión 2008. - Grupo InfoStat FCA, Universidad Nacional de Córdoba, Córdoba 2008.
  15. He, C.J., Finlayson, S.A., Drew, M.C., Jordan, W.R., Morgan, P.W.: Ethylene biosynthesis during aerenchyma formation in roots of maize subjected to mechanical impedance and hypoxia. - Plant Physiol. 112: 1679-1685, 1996. Go to original source...
  16. Jefferson, R.A.: Assaying chimeric genes in plants: the GUS gene fusion system. - Plant mol. Biol. Rep. 5: 387-405, 1987. Go to original source...
  17. Jia, H., Ren, H., Gu, M., Zhao, J., Sun, S., Zhang, X., Chen, J., Wu, P., Xu, G.: The phosphate transporter gene OsPht1;8 is involved in phosphate homeostasis in rice. - Plant Physiol. 156: 1164-1175, 2011. Go to original source...
  18. Karthikeyan, A.S., Varadarajan, D.K., Mukatira, U.T., D'Urzo, M.P., Damsz, B., Raghothama, K.G.: Regulated expression of Arabidopsis phosphate transporters. - Plant Physiol. 130: 221-233, 2002. Go to original source...
  19. Karthikeyan, A.S., Ballachandra, D.N., Raghothama, K.G.: Promoter deletion analysis elucidates the role of cis elements and 5'UTR intron in spatiotemporal regulation of AtPht1;4 expression in Arabidopsis. - Physiol. Plant. 136: 10-18, 2009. Go to original source...
  20. Koyama, T., Ono, T., Shimizu, M., Jimbo, T., Mizuno, R., Tomita, K., Mitsukawa, N., Kawazu, T., Kimura, T., Ohmiya, K., Sakka, K.: Promoter of Arabidopsis thaliana phosphate transporter gene drives root-specific expression of transgene in rice. - J. Biosci. Bioeng. 99: 38-42, 2005. Go to original source...
  21. Lei, M., Zhu, C., Liu, Y., Karthikeyan, A.S., Bressan, R.A., Raghothama, K.G., Liu, D.: Ethylene signalling is involved in regulation of phosphate starvation-induced gene expression and production of acid phosphatase and anthocyanin in Arabidopsis. - New Phytol. 189: 1084-1095, 2011. Go to original source...
  22. Liu, G.D., Dunlop, J., Phungz, T.: Induction of root hair growth in a phosphorus-buffered culture solution. - J. Integrative Agr. 5: 370-376, 2006. Go to original source...
  23. Livak, K.J., Schmittgen, T.D.: Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. - Methods 25: 402-408, 2001. Go to original source...
  24. Lonsdale, D.M., Moisan, L.J., Harvey, A.J.: PFC1 to pFC7: a novel family of combinatorial cloning vectors. - Plant mol. Biol. Rep. 13: 343-345, 1995. Go to original source...
  25. Mane, V.P., Heuer, M.A., Hillyer, P., Navarro, M.B., Rabin, R.L.: Systematic method for determining an ideal housekeeping gene for real-time PCR analysis. - J. Biomol. Technol. 19: 342-347, 2008.
  26. Marjanac, G., Karimi, M., Naudts, M., Beeckman, T., Depicker, A., De Buck, S.: Gene silencing induced by hairpin or inverted repeated sense transgenes varies among promoters and cell types. - New Phytol. 184: 851-864, 2009. Go to original source...
  27. Marenkova, T.V., Loginova, D.B., Deineko, E.V.: Mosaic patters of transgene expression in plants. - Russ. J. Genet. 48: 249-260, 2012. Go to original source...
  28. Miao, J., Sun, J., Liu, D., Li, B., Zhang, A., Li, Z., Tong, Y.: Characterization of the promoter of phosphate transporter TaPHT1.2 differentially expressed in wheat varieties. - J. Genet. Genomics 36: 455-466, 2009. Go to original source...
  29. Misson, J., Thibaud, M.C., Bechtold, N., Raghothama, K., Nussaume, L.: Transcriptional regulation and functional properties of Arabidopsis Pht1;4, a high affinity transporter contributing greatly to phosphate uptake in phosphate deprived plants. - Plant mol. Biol. 55: 727-741, 2004. Go to original source...
  30. Mudge, S.R., Rae, A.L,, Diatloff, E., Smith, F.W.: Expression analysis suggests novel roles for members of the Pht1 family of phosphate transporters in Arabidopsis. - Plant J. 31: 341-353, 2002. Go to original source...
  31. Mudge, S.R., Smith, S.W., Richardson, A.E.: Root-specific and phosphate-regulated expression of phytase under the control of a phosphate transporter promoter enables Arabidopsis to grow on phytate as a sole P source. - Plant Sci. 165: 871-878, 2003. Go to original source...
  32. Mukatira, U.T., Liu, C., Varadarajan, D.K., Raghothama, K.G.: Negative regulation of phosphate starvation-induced genes. - Plant Physiol. 127: 1854-1862, 2001.
  33. Murashige, T., Skoog, F.: A revised medium for rapid growth and bioassays with tobacco tissue cultures. - Physiol. Plant. 15: 473-497, 1962. Go to original source...
  34. Nagarajan, V.K., Smith, A.P.: Ethylene's role in phosphate starvation signaling: more than just a root growth regulator. - Plant Cell Physiol. 53: 277-286, 2012. Go to original source...
  35. Nagy, R., Vasconcelos, M.J, Zhao, S., McElver, J., Bruce, W., Amrhein, N., Raghothama, K.G., Bucher, M.: Differential regulation of five Pht1 phosphate transporters from maize (Zea mays L.). - Plant Biol. 8: 186-197, 2006. Go to original source...
  36. Okamoto, T., Tsurumi, S., Shibasaki, K., Obana, Y., Takaji, H., Oono, Y., Rahman, A.: Genetic dissection of hormonal responses in the roots of Arabidopsis grown under continuous mechanical impedance. - Plant Physiol. 146: 1651-1662, 2008. Go to original source...
  37. Olsen, S.R., Cole, C.V., Watanabe, F.S., Dean, L.A.: Estimation of available phosphorus in soils by extraction with sodium bicarbonate. - Circular 939, US Department of Agriculture, Washington DC. 1954.
  38. Oono, Y., Kobayashi, F., Kawahara, Y., Yazawa, T., Handa, H., Itoh, T., Matsumoto, T.: Characterization of the wheat (Triticum aestivum L.) transcriptome by de novo assembly for the discovery of phosphate starvation-responsive genes: gene expression in Pi-stressed wheat. - BMC Genomics 14: 77, 2013. Go to original source...
  39. Paszkowski, U., Kroken, S., Roux, C., Briggs, S.P.: Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis. - Proc. nat. Acad. Sci. USA 99: 13324-3329, 2002. Go to original source...
  40. Peñaloza, E., Muñoz, G., Salvo-Garrido, H., Silva, H., Corcuera, L.J.: Phosphate deficiency regulates phosphoenolpyruvate carboxylase expression in proteoid root clusters of white lupin. - J. exp. Bot. 56: 145-153, 2005.
  41. Rae, A.L., Cybinski, D.H., Jarmey, J.M., Smith, F.W.: Characterization of two phosphate transporters from barley; evidence for diverse function and kinetic properties among members of the Pht1 family. - Plant mol. Biol. 53: 27-36, 2003. Go to original source...
  42. Rae, A.L., Jarmey, J.M., Mudge, S.R., Smith, F.W.: Overexpression of a high-affinity phosphate transporter in transgenic barley plants does not enhance phosphate uptake rates. - Funct. Plant Biol. 31: 141-148, 2004. Go to original source...
  43. Ramadan, A.M., Eissa, H.F., El-Domyati, F.M., Saleh, O.M., Ibrahim, N.E., Salama, M., Mahfouz, M.M., Bahieldin, A.: Characterization of inhibitor(s) of β-glucuronidase enzyme activity in GUS-transgenic wheat. - Plant Cell Tissue Organ Cult. 107: 373-381, 2011. Go to original source...
  44. Rausch, C., Bucher, M.: Molecular mechanisms of phosphate transport in plants. - Planta 216: 23-37, 2002. Go to original source...
  45. Reddy, M.S.S., Dinkins, R.D., Collins, G.B.: Gene silencing in transgenic soybean plants transformed via particle bombardment. - Plant Cell Rep. 21: 676-683, 2003.
  46. Rooke, L., Steele, S.H., Barcelo, P., Shewry, P.R., Lazzeri, P.A.: Transgene inheritance, segregation and expression in bread wheat. - Euphytica 129: 301-309, 2003. Go to original source...
  47. Rubio, V., Linhares, F., Solano, R., Martín, A.C., Iglesias, J., Leyva, A., Paz-Ares, J.: A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae. - Genes Dev. 15: 2122-2133, 2001. Go to original source...
  48. Schünmann, P.H.D., Richardson, A.E., Smith, F.W., Delhaize, E.: Characterization of promoter expression patterns derived from the Pht1 phosphate transporter genes of barley (Hordeum vulgare L.). - J. exp. Bot. 55: 855-865, 2004a. Go to original source...
  49. Schünmann, P.H.D., Richardson, A.E., Vickers, C.E., Delhaize, E.: Promoter analysis of the barley Pht1;1 phosphate transporter gene identifies regions controlling root expression and responsiveness to phosphate deprivation. - Plant Physiol. 136: 4205-4214, 2004b. Go to original source...
  50. Shin, H., Shin, H.S., Dewbre, G.R., Harrison, M.J.: Phosphate transport in Arabidopsis: Pht1;1 and Pht1;4 play a major role in phosphate acquisition from low-and high-phosphate environments. - Plant J. 39: 629-642, 2004 Go to original source...
  51. Sivamani, E., Brey, C.W., Talbert, L.E., Young, M.A., Dyer, W.E., Kaniewski, W.K., Qu, R.: Resistance to wheat streak mosaic virus in transgenic wheat engineered with the viral coat protein gene. - Transgenic Res. 11: 31-41, 2002. Go to original source...
  52. Teng, W., Deng, Y., Chen, X.P., Xu, X.F., Chen, R.Y., Lv, Y., Zhao, Y.Y., Zhao, X.Q., He, X., Li, B., Tong, Y.P., Zhang, F.S., Li, Z.S.: Characterization of root response to phosphorus supply from morphology to gene analysis in field-grown wheat. - J. exp. Bot. 64: 1403-1411, 2013. Go to original source...
  53. Thibaud, M.C., Arrighi, J.F., Bayle, V., Chiarenza, S., Creff, A., Bustos, R., Paz-Ares, J., Poirier, Y., Nussaume, L.: Dissection of local and systemic transcriptional responses to phosphate starvation in Arabidopsis. - Plant J. 64: 775-789, 2010. Go to original source...
  54. Tittarelli, A., Milla, L., Vargas, F., Morales, A., Neupert, C., Meisel, L.A., Salvo, H., Peñaloza, E., Muñoz, G., Corcuera, L,J., Silva, H.: Isolation and comparative analysis of the TaPT2 promoter: identification in silico of new putative regulatory motifs conserved between monocots and dicots. - J. exp. Bot. 58: 2573-2582, 2007. Go to original source...
  55. Yao, Q., Cong, L., Chang, J.L., Li, K.X., Yang, G.X., He, G.Y.: Low copy number gene transfer and stable expression in a commercial wheat cultivar via particle bombardment. - J. exp. Bot. 57: 3737-3746, 2006. Go to original source...
  56. Zhou, J., Jiao, F., Wu, Z., Li, Y., Wang, X., He, X., Zhong, W., Wu, P.: OsPHR2 is involved in phosphate-starvation signaling and excessive phosphate accumulation in shoots of plants. - Plant Physiol. 146: 1673-1686, 2008. Go to original source...