Biologia plantarum 2013, 57:11-25 | DOI: 10.1007/s10535-012-0109-z

Recent advances in plant immunity: recognition, signaling, response, and evolution

S. Hou1,*, C. Zhang1, Y. Yang1, D. Wu1
1 School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, P.R. China

Innate immune system is employed by plants to defend against phytopathogenic microbes through specific perception of non-self molecules and subsequent initiation of resistance responses. Current researches elucidate that plants mostly rely on cell surface-located pattern recognition receptors (PRRs) and intracellular nucleotide-binding leucine-rich repeat proteins (NB-LRRs) to recognize pathogen-associated molecular patterns (PAMPs) and effector proteins from microbial pathogens, initiating PAMP- and effector-triggered immunity (PTI and ETI), respectively. Some pathogenic bacterial effector proteins are usually secreted into plant cells and play a virulence function by suppressing plant PTI, implying an evolutionary process of plant immunity from PTI to ETI. In the past several years, a great progress has been achieved to reveal fascinating molecular mechanisms underlying the pathogenic recognition, resistance signaling transduction, and plant immunity evolution. Here, we summarized the latest breakthroughs about these topics, and offered an integral understanding of plant molecular immunity.

Keywords: ETI; hypersensitive response; NB-LRR; PTI; receptor-like cytoplasmic kinases; RIN4
Subjects: immunity; hypersensitive response; leucine-rich repeat proteins; receptor-like cytoplasmic kinases; signaling

Received: August 2, 2010; Accepted: November 24, 2011; Published: March 1, 2013Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Hou, S., Zhang, C., Yang, Y., & Wu, D. (2013). Recent advances in plant immunity: recognition, signaling, response, and evolution. Biologia plantarum57(1), 11-25. doi: 10.1007/s10535-012-0109-z.
Download citation

References

  1. Ade, J., Young, B.J., Golstein, C., Innes, R.W.: Indirect activation of a plant nucleotide binding site-leucine-rich repeat protein by a bacterial protease. - Proc. nat. Acad. Sci. USA 104: 2531-2536, 2007. Go to original source...
  2. Anderson, J.C., Bartels, S., Besteiro, M.A., Shahollari, B., Ulm, R., Peck, S.C.: Arabidopsis MAP Kinase Phosphatase 1 (AtMKP1) negatively regulates MPK6-mediated PAMP responses and resistance against bacteria. - Plant J. 67: 258-268, 2011. Go to original source...
  3. Asai, T., Tena, G., Plotnikova, J., Willmann, M.R., Chiu, W.L., Gomez-Gomez L.: MAP kinase signaling cascade in Arabidopsis innate immunity. - Nature 415: 977-983, 2002. Go to original source...
  4. Ashfield, T., Bocian, A., Held, D., Henk, A.D.: Genetic and physical localization of the soybean Rpg1-b disease resistance gene reveals a complex locus containing several tightly linked families of NBS-LRR genes. - Mol. Plant Microbe Interact. 16: 817-826, 2003. Go to original source...
  5. Axtell, M.J., Staskawicz, B.J.: Initiation of RPS2-specified disease resistance in Arabidopsis is coupled to the AvrRpt2-directed elimination of RIN4. - Cell 112: 369-377, 2003. Go to original source...
  6. Belkhadir, Y., Nimchuk, Z., Hubert, D.A., Mackey, D., Dangl, J.L.: Arabidopsis RIN4 negatively regulates disease resistance mediated by RPS2 and RPM1 downstream or independent of the NDR1 signal modulator and is not required for the virulence functions of bacterial type III effectors AvrRpt2 or AvrRpm1. - Plant Cell 16: 2822-2835, 2004. Go to original source...
  7. Bernoux, M., Timmers, T., Jauneau, A., Brière, C., De Wit, P.J., Marco, Y., Deslandes, L.: RD19, an Arabidopsis cysteine protease required for RRS1-R-mediated resistance, is relocalized to the nucleus by the Ralstonia solanacearum PopP2 effector. - Plant Cell 20: 2252-2264, 2008. Go to original source...
  8. Bethke, G., Unthan, T., Uhrig, J.F., Pöschl, Y., Gust, A.A., Scheel, D., Lee, J.: Flg22 regulates the release of an ethylene response factor substrate from MAP kinase 6 in Arabidopsis thaliana via ethylene signaling. - Proc. nat. Acad. Sci. USA 106: 8067-8072, 2009. Go to original source...
  9. Botër, M., Amigues, B., Peart, J., Breuer, C., Kadota, Y., Casais, C.: Structural and functional analysis of SGT1 reveals that its interaction with HSP90 is required for the accumulation of Rx, an R protein involved in plant immunity. - Plant Cell 19: 3791-3804, 2007.
  10. Boudsocq, M., Willmann, M.R., McCormack, M., Lee, H., Shan, L., He, P., Bush, J., Cheng, S.H., Sheen, J.: Differential innate immune signalling via Ca2+ sensor protein kinases. - Nature 464: 418-422, 2010. Go to original source...
  11. Brunner, F., Rosahl, S., Lee, J., Rudd, J.J., Geiler, C., Kauppinen, S., Rasmussen, G., Scheel, D., Nürnberger, T.: Pep-13, a plant defense-inducing pathogen-associated pattern from Phytophthora transglutaminases. - EMBO J. 21: 6681-6688, 2002. Go to original source...
  12. Brutus, A., Sicilia, F., Macone, A., Cervone, F., De Lorenzo, G.: A domain swap approach reveals a role of the plant wall-associated kinase 1 (WAK1) as a receptor of oligogalacturonides. - Proc. nat. Acad. Sci. USA 107: 9452-9457, 2010. Go to original source...
  13. Burch-Smith, T.M., Schiff, M., Caplan, J.L., Tsao, J., Czymmek, K., Dinesh-Kumar, S.P.: A novel role for the TIR domain in association with pathogen-derived elicitors. - PLoS Biol. 5: e68, 2007. Go to original source...
  14. Burgyán, J., Klement, Z.: Early induced selective inhibition of incompatible bacteria in tobacco plants. - Phytopathol. Mediterr. 18: 153-161, 1979.
  15. Caplan, J., Padmanabhan, M., Burch-Smith, T.M., Czymmek, K., Dinesh-Kumar, S.P.: Chloroplastic protein NRIP1 mediates innate immune receptor recognition of a viral effector. - Cell 132: 449-462, 2008a. Go to original source...
  16. Caplan, J., Padmanabhan, M., Dinesh-Kumar, S.P.: Plant NB-LRR immune receptors: from recognition to transcriptional reprogramming. - Cell Host Microbe 3: 26-35, 2008b. Go to original source...
  17. Chang, J.H., Tai, Y.S., Bernal, A.J., Lavelle, D.T., Staskawicz, B.J., Michelmore, R.W.: Functional analyses of the Pto resistance gene family in tomato and the identification of a minor resistance determinant in a susceptible haplotype. - Mol. Plant Microbe Interact. 15: 281-291, 2002. Go to original source...
  18. Chinchilla, D., Zipfel, C., Robatzek, S., Kemmerling, B., Nürnberger, T., Jones, J.D., Felix, G., Boller, T.: A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. - Nature 448: 497-500, 2007. Go to original source...
  19. Chisholm, S.T., Coaker, G., Day, B., Staskawicz, B.J.: Host-microbe interactions: shaping the evolution of the plant immune response. - Cell 124: 803-814, 2006. Go to original source...
  20. Chu, Z., Yuan, M., Yao, J., Ge, X., Yuan, B., Xu, C.: Promoter mutations of an essential gene for pollen development result in disease resistance in rice. - Genes Dev. 20: 1250-1255, 2006. Go to original source...
  21. Chung, E.H, Da Cunha, L., Wu, A.J., Gao, Z., Cherkis, K., Afzal, A.J., Mackey, D., Dangl, J.L.: Specific threonine phosphorylation of a host target by two unrelated type III effectors activates a host innate immune receptor in plants. - Cell Host Microbe 17: 125-136, 2011. Go to original source...
  22. Clay, N.K., Adio, A.M., Denoux, C., Jander, G., Ausubel, F.M.: Glucosinolate metabolites required for an Arabidopsis innate immune response. - Science 323: 95-101, 2009. Go to original source...
  23. Dangl, J.L., Jones, J.D.G.: Plant pathogens and integrated defence responses to infection. - Nature 411: 826-833, 2001. Go to original source...
  24. Daxberger, A., Nemak, A., Mithofer, A., Fliegmann, J., Ligterink, W., Hirt, H., Ebel, J.: Activation of members of a MAPK module in beta-glucan elicitor mediated non-host resistance of soybean. - Planta 225: 1559-1571, 2007. Go to original source...
  25. Denoux, C., Galletti, R., Mammarella, N., Gopalan, S., Werck, D., De Lorenzo, G., Ferrari, S., Ausubel, F.M., Dewdney, J.: Activation of defense response pathways by OGs and Flg22 elicitors in Arabidopsis seedlings. - Mol. Plant 1: 423-445, 2008. Go to original source...
  26. Deslandes, L., Olivier, J., Peeters, N., Feng, D.X.: Physical interaction between RRS1-R., a protein conferring resistance to bacterial wilt, and PopP2, a type III effector targeted to the plant nucleus. - Proc. nat. Acad. Sci. USA 100: 8024-8029, 2003. Go to original source...
  27. Devarenne, T.P., Ekengren, S.K., Pedley, K.F., Martin, G.B.: Adi3 is a Pdk1-interacting AGC kinase that negatively regulates plant cell death. - EMBO J. 25: 255-265, 2006.
  28. Ding, X., Richter, T., Chen, M., Fujii, H.: A rice kinase-protein interaction map. - Plant Physiol. 149: 1478-1492, 2009. Go to original source...
  29. Dixon, M.S., Jones, D.A., Keddie, J.S., Thomas, C.M., Harrison, K., Jones, J.D.: The tomato Cf-2 disease resistance locus comprises two functional genes encoding leucine-rich repeat proteins. - Cell 84: 451-459, 1996. Go to original source...
  30. Dodds, P., Lawrence, G., Catanzariti, A.M., Teh, T.: Direct protein interaction underlies gene-for-gene specificity and co-evolution of the flax L5/L6/L7 resistance genes and flax rust AvrL567 avirulence genes. - Proc. nat. Acad. Sci. USA 103: 8888-8893, 2006. Go to original source...
  31. Eitas, T.K., Dangl, J.L.: NB-LRR proteins: pairs, pieces, perception, partners, and pathways. - Curr. Opin. Plant Biol. 13: 472-477, 2010. Go to original source...
  32. Eitas, T.K., Nimchuk, Z.L., Dangl, J.L.: Arabidopsis TAO1 is a TIR-NB-LRR protein that contributes to disease resistance induced by the Pseudomonas syringae effector AvrB. - Proc. nat. Acad. Sci. USA 105: 6475-6480, 2008. Go to original source...
  33. Ek-Ramos, M.J., Avila, J., Cheng, C., Martin, G.B., Devarenne, T.P.: The T-loop extension of the tomato protein kinase AvrPto-dependent Pto-interacting protein 3: (Adi3) directs nuclear localization for suppression of plant cell death. - J. biol. Chem. 285: 17584-17594, 2010. Go to original source...
  34. Erickson, F.L., Holzberg, S., Calderon-Urrea, A., Handley, V., Axtell, M., Corr, C., Baker, B.: The helicase domain of the TMV replicase proteins induces the N-mediated defence response in tobacco. - Plant J. 18: 67-75, 1999. Go to original source...
  35. Fahlgren, N., Howell, M.D., Kasschau, K.D., Chapman, E.J., Sullivan, C.M., Cumbie, J.S.: High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of MIRNA genes. - PLoS ONE, 2: e219, 2007. Go to original source...
  36. Felix, G., Boller, T.: Molecular sensing of bacteria in plants. The highly conserved RNA-binding motif RNP-1 of bacterial cold shock proteins is recognized as an elicitor signal in tobacco. - J. biol. Chem. 278: 6201-6208, 2003. Go to original source...
  37. Felix, G., Duran, J.D., Volko, S., Boller, T.: Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. - Plant J. 18: 265-276, 1999. Go to original source...
  38. Fliegmann, J., Mithofer, A., Wanner, G., Ebel, J.: An ancient enzyme domain hidden in the putative beta-glucan elicitor receptor of soybean may play an active part in the perception of pathogen-associated molecular patterns during broad host resistance. - J. biol. Chem. 279: 1132-1140, 2004. Go to original source...
  39. Flor, H.H.: Current status of the gene-for-gene concept. - Annu. Rev. Phytopathol. 9: 275-296, 1971. Go to original source...
  40. Galán, J.E., Collmer, A.: Type III secretion machines: bacterial devices for protein delivery into host cells. - Science 284: 1322-1328, 1999.
  41. Gao, M., Liu, J., Bi, D., Zhang, Z., Cheng, F., Chen, S., Zhang, Y.: MEKK1, MKK1/MKK2 and MPK4 function together in a mitogen-activated protein kinase cascade to regulate innate immunity in plants. - Cell Res. 18: 1190-1198, 2008. Go to original source...
  42. GarcÍa, A.V., Blanvillain-Baufumé, S., Huibers, R.P., Wiermer, M., Li, G., Gobbato, E., Rietz, S., Parker, J.E.: Balanced nuclear and cytoplasmic activities of EDS1 are required for a complete plant innate immune response. - PLoS Pathog. 6: e1000970, 2010. Go to original source...
  43. Gassmann, W., Hinsch, M.E., Staskawicz, B.J.: The Arabidopsis RPS4 bacterial-resistance gene is a member of the TIR-NBS-LRR family of disease-resistance genes. - Plant J. 20: 265-277, 1999. Go to original source...
  44. Göhre, V., Spallek, T., Häweker, H., Mersmann, S., Mentzel, T., Boller, T.: Plant pattern recognition receptor FLS2 is directed for degradation by the bacterial ubiquitin ligase AvrPtoB. - Curr. Biol. 18: 1824-1832, 2008.
  45. Gómez-Gómez, L., Baue, Z., Boller, T.: Both the extracellular leucine-rich repeat domain and the kinase activity of FLS2 are required for flagellin binding and signaling in Arabidopsis. - Plant Cell 13: 155-163, 2001. Go to original source...
  46. Gómez-Gómez, L., Boller, T.: FLS2: An LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. - Mol. Cell 5: 1003-1011, 2000. Go to original source...
  47. Gómez-Gómez, L., Felix, G., Boller, T.: A single locus determines sensitivity to bacterial flagellin in Arabidopsis thaliana. - Plant J. 18: 277-284, 1999. Go to original source...
  48. Guo, M., Tian, F., Wamboldt, Y., Alfano, J.R.: The majority of the type III effector inventory of Pseudomonas syringae pv. tomato DC3000 can suppress plant immunity. - Mol. Plant Microbe Interact. 22: 1069-1080, 2009. Go to original source...
  49. Hanania, U., Avni, A.: High-affinity binding site for ethylene-inducing xylanase elicitor on Nicotiana tabacum membranes. - Plant J. 12: 113-120, 1997. Go to original source...
  50. Hatsugai, N., Iwasaki, S., Tamura, K., Kondo, M.: A novel membrane fusion-mediated plant immunity against bacterial pathogens. - Genes Dev. 23: 2496-2506, 2009. Go to original source...
  51. Hatsugai, N., Kuroyanagi, M., Yamada, K., Meshi, T., Tsuda, S., Kondo, M.: A plant vacuolar protease, VPE, mediates virus-induced hypersensitive cell death. - Science 305: 855-858, 2004. Go to original source...
  52. He, P., Shan, L., Lin, N.C., Martin, G.B., Kemmerling, B., Nürnberger, T., Sheen, J.: Specific bacterial suppressors of MAMP signaling upstream of MAPKKK in Arabidopsis innate immunity. - Cell 125: 563-575, 2006. Go to original source...
  53. He, S.Y., Huang, H.C., Collmer, A.: Pseudomonas syringae pv. syringae harpinPss: a protein that is secreted via the Hrp pathway and elicits the hypersensitive response in plants. - Cell 73: 1255-1266, 1993. Go to original source...
  54. Heese, A., Hann, D.R., Gimenez, I.S., Jones, A.M., He, K., Li, J., Schroeder, J.I., Peck, S.C., Rathjen, J.P.: The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants. - Proc. nat. Acad. Sci. USA 104: 12217-12222, 2007. Go to original source...
  55. Hofius, D., Schultz-Larsen, T., Joensen, J., Tsitsigiannis, D.I., Petersen, N.H.: Autophagic components contribute to hypersensitive cell death in Arabidopsis. - Cell 137: 773-783, 2009. Go to original source...
  56. Holt, B., Belkhadir, Y., Dangl, J.L.: Antagonistic control of disease resistance protein stability in the plant immune system. - Science 309: 929-922, 2005. Go to original source...
  57. Hubert, D.A., Tornero, P., Belkhadir, Y., Krishna, P., Shirasu, K., Dangl, J.L.: Cytosolic HSP90 associates with and modulates the Arabidopsis RPM1 disease resistance protein. - EMBO J. 22: 569-579, 2003. Go to original source...
  58. Hueck, C.J.: Type III protein secretion systems in bacterial pathogens of animals and plants. - Microbiol. Mol. Biol. Rev. 62: 379-433, 1998.
  59. Iizasa, E., Mitsutomi, M., Nagano, Y.: Direct binding of a plant LysM receptor-like kinase, LysM RLK1/CERK1, to chitin in vitro. - J. biol. Chem. 285: 2996-3004, 2010. Go to original source...
  60. Janjusevic, R., Abramovitch, R.B., Martin, G.B., Stebbins, C.E.: A bacterial inhibitor of host programmed cell death defences is an E3 ubiquitin ligase. - Science 311: 222-226, 2006. Go to original source...
  61. Jia, Y., McAdams, S.A., Bryan, G.T., Hershey, H.P., Valent, B.: Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. - EMBO J. 19: 4004-4014, 2000. Go to original source...
  62. Jones, D.A., Thomas, C.M., Hammond-Kosack, K.E., Balint-Kurti, P.J., Jones, J.D.: Isolation of the tomato Cf-9 gene for resistance to Cladosporium fulvum by transposon tagging. - Science 266: 789-793. 1994 Go to original source...
  63. Jones, J.D., Dangl, J.L.: The plant immune system. - Nature 444: 323-329, 2006. Go to original source...
  64. Kaku, H., Nishizawa, Y., Ishii-Minami, N., Akimoto-Tomiyama, C.: Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. - Proc. nat. Acad. Sci. USA 103: 1086-1091, 2006. Go to original source...
  65. Kim, M.G., Da Cunha, L., McFall, A.J., Belkhadir, Y., Deb Roy, S., Dangl, J.L., Mackey, D.: Two Pseudomonas syringae type III effectors inhibit RIN4-regulated basal defense in Arabidopsis. - Cell 121: 749-759, 2005. Go to original source...
  66. Klarzynski, O., Plesse, B., Joubert, J.M., Yvin, J.C., Kopp, M., Kloareg, B., Fritig, B.: Linear beta-1,3 glucans are elicitors of defense responses in tobacco. - Plant Physiol. 124: 1027-1038, 2000. Go to original source...
  67. Klement, Z.: Rapid detection of the pathogenicity of phytopathogenic Pseudomonads. - Nature 199: 299-300, 1963. Go to original source...
  68. Krol, E., Mentzel T., Chinchilla, D., Boller, T., Felix, G.: Perception of the Arabidopsis danger signal peptide 1 involves the pattern recognition receptor AtPEPR1 and its close homologue AtPEPR2. - J. biol. Chem. 285: 13471-13479, 2010. Go to original source...
  69. Kunze, G., Zipfel, C., Robatzek, S., Niehaus, K., Boller, T., Felix, G.: The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants. - Plant Cell 16: 3496-3507, 2004. Go to original source...
  70. Kurusu, T., Hamada, J., Nokajima, H., Kitagawa, Y.: Regulation of microbe-associated molecular pattern-induced hypersensitive cell death, phytoalexin production, and defense gene expression by calcineurin B-like proteininteracting protein kinases, OsCIPK14/15, in rice cultured cells. - Plant Physiol. 153: 678-692, 2010. Go to original source...
  71. Lamb, C., Dixon, R.A.: The oxidative burst in plant disease resistance. - Annu. Rev. Plant Physiol. Plant mol. Biol. 48: 251-275, 1997. Go to original source...
  72. Lange, A., Mills, R.E., Lange, C.J., Stewart, M., Devine, S.E., Corbett, A.H.: Classical nuclear localization signals: definition, function, and interaction with importin α. - J. biol. Chem. 282: 5101-5105, 2007. Go to original source...
  73. Lee, J., Klessig, D.F., Nurnberger, T.: A harpin binding site in tobacco plasma membranes mediates activation of the pathogenesis-related gene HIN1 independent of extracellular calcium but dependent on mitogen-activated protein kinase activity. - Plant Cell 13: 1079-1093, 2001. Go to original source...
  74. Lee, S.W., Han, S.W., Sririyanum, M., Park, C.J., Seo, Y.S., Ronald, P.C.: A type I-secreted, sulfated peptide triggers XA21-mediated innate immunity. - Science 326: 850-853, 2009. Go to original source...
  75. Leipe, D.D., Koonin, E.V., Aravind, L.: STAND, a class of P-loop NTPases including animal and plant regulators of programmed cell death: multiple, complex domain architectures, unusual phyletic patterns, and evolution by horizontal gene transfer. - J. mol. Biol. 343: 1-28, 2004. Go to original source...
  76. Li, Y., Zhang, Q., Zhang, J., Wu, L., Qi, Y., Zhou, J-M.: Identification of microRNAs involved in pathogenassociated molecular pattern-triggered plant innate immunity. - Plant Physiol. 152: 2222-2231, 2010. Go to original source...
  77. Ligterink, W., Kroj T., Zur Nieden, U., Hirt, H., Scheel, D.: Receptor-mediated activation of a MAP kinase in pathogen defence of plants. - Science 276: 2054-2057, 1997. Go to original source...
  78. Lim, M.T., Kunkel, B.N.: The Pseudomonas syringae type III effector AvrRpt2 promotes virulence independently of RIN4, a predicted virulence target in Arabidopsis thaliana. - Plant J. 40: 790-798, 2004. Go to original source...
  79. Lin, N.C., Martin, G.B.: Pto- and Prf-mediated recognition of AvrPto and AvrPtoB restricts the ability of diverse Pseudomonas syringae pathovars to infect tomato. - Mol. Plant Microbe Interact. 20: 806-815, 2007. Go to original source...
  80. Liu, J., Elmore, J.M., Lin, Z.J., Coaker, G.: A receptor-like cytoplasmic kinase phosphorylates the host target RIN4, leading to the activation of a plant innate immune receptor. - Cell Host Microbe 17: 137-146, 2011. Go to original source...
  81. Lovrekovich, L., Farkas, G.L.: Induced protection against wildfire disease in tobacco leaves treated with heat-killed bacteria. - Nature 205: 823-824, 1965. Go to original source...
  82. Lu, D., Wu, S., Gao, X., Zhang, Y., Shan, L., He, P.: A receptor-like cytoplasmic kinase, BIK1, associates with a flagellin receptor complex to initiate plant innate immunity. - Proc. nat. Acad. Sci. USA 107: 496-501, 2010. Go to original source...
  83. Luo, Y., Caldwell, K.S., Wroblewski, T., Wright, M.E., Michelmore, R.W.: Proteolysis of a negative regulator of innate immunity is dependent on resistance genes in tomato and Nicotiana benthamiana and induced by multiple bacterial effectors. - Plant Cell 21: 2458-2472, 2009. Go to original source...
  84. Mackey, D., Belkhadir, Y., Alfonso, J.M., Ecker, J.R., Dangl, J.L.: Arabidopsis RIN4 is a target of the type III virulence effector AvrRpt2 and modulates RPS2-mediated resistance. - Cell 112: 379-389, 2003. Go to original source...
  85. Mackey, D., Holt, B.F. III., Wiig, A., Dangl, J.L.: RIN4 interacts with Pseudomonas syringae type III effector molecules and is required for RPM1-mediated resistance in Arabidopsis. - Cell 108: 743-754, 2002. Go to original source...
  86. Martin, G.B., Brommonschenkel, S.H., Chunwongse, J., Frary, A., Ganal, M.W., Spivey, R.: Map-based cloning of a protein kinase gene conferring disease resistance in tomato. - Science 262: 1432-1436, 1993. Go to original source...
  87. Martin, G.B., Frary A., Wu, T.Y., Brommonschenkel, S., Chunwongse J, Earle, E.D., Tanksley, S.D.: A member of the tomato Pto gene family confers sensitivity to fenthion resulting in rapid cell death. - Plant Cell 6: 1543-52, 1994. Go to original source...
  88. Melotto, M., Underwood, W., Jessica, K., Kinya, N., He, S.Y.: Plant stomata function in innate immunity against bacterial invasion. - Cell 126: 969-980, 2006. Go to original source...
  89. Mestre, P., Baulcombe, D.C.: Elicitor-mediated oligomerization of the tobacco N disease resistance protein. - Plant Cell 8: 491-501, 2006. Go to original source...
  90. Meyer, A., Puhler, A., Niehaus, K.: The lipopolysaccharides of the phytopathogen Xanthomonas campestris pv. campestris induce an oxidative burst reaction in cell cultures of Nicotiana tabacum. - Planta 213: 214-222, 2001. Go to original source...
  91. Miya, A., Albert, P., Shinya, T., Desaki, Y., Ichimura, K., Shirasu, K., Narusaka, Y., Kawakami, N., Kaku, H., Shibuya, N.: CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. - Proc. nat. Acad. Sci. USA 104: 19613-19618, 2007. Go to original source...
  92. Mucyn, T.S., Clemente, A., Andriotis, V.M., Balmuth, A.L., Oldroyd, G.E., Staskawicz, B.J., Rathjen, J.P.: The tomato NBARC-LRR protein Prf interacts with Pto kinase in vivo to regulate specific plant immunity. - Plant Cell 18: 2792-2806, 2006. Go to original source...
  93. Mucyn, T.S., Wu, A.J., Balmuth, A.L., Arasteh, J.M., Rathjen, J.P.: Regulation of tomato Prf by Pto-like protein kinases. - Mol. Plant Microbe Interact. 22: 391-401, 2009. Go to original source...
  94. Navarro, L., Dunoyer, P., Jay, F., Arnold, B., Dharmasiri, N., Estelle, M.: A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. - Science 312: 436-439, 2006. Go to original source...
  95. Navarro, L., Zipfel, C., Rowland, O., Keller, I., Boller, T., Jones, J.D.: The transcriptional innate immune response to flg22. Interplay and overlap with Avr gene-dependent defence responses and bacterial pathogenesis. - Plant Physiol. 135: 1113-1128, 2004. Go to original source...
  96. Newman, M. A., Daniels, M. J., Dow, J.M.: The activity of lipid A and core components of bacterial lipopolysaccharides in the prevention of the hypersensitive response in pepper. - Mol. Plant Microbe Interact. 10: 926-928, 1997. Go to original source...
  97. Nomura, H., Komori, T., Kobori, M., Nakahira, Y., Shiina, T.: Evidence for chloroplast control of external Ca2+-induced cytosolic Ca2+ transients and stomatal closure. - Plant J. 53: 988-998, 2008. Go to original source...
  98. Ntoukakis, V., Mucyn, T.S., Gimenez-Ibanez, S., Chapman, H.C., Gutierrez, J.R., Balmuth, A.L., Jones, A.M., Rathjen, J.P.: Host inhibition of a bacterial virulence effector triggers immunity to infection. - Science 324: 784-787, 2009. Go to original source...
  99. Nürnberger, T., Nennstiel, D., Jabs, T., Sacks, W.R., Hahlbrock, K., Scheel, D.: High affinity binding of a fungal oligopeptide elicitor to parsley plasma membranes triggers multiple defense responses. - Cell 78: 449-460, 1994. Go to original source...
  100. Ogasawara, Y., Kaya, H., Hiraoka, G., Yumoto, F., Kimura, S., Kadota, Y., Hishinuma, H., Senzaki, E., Yamagoe, S., Nagata, K., Nara, M., Suzuki, K., Tanokura, M., Kuchitsu, K.: Synergistic activation of the Arabidopsis NADPH oxidase AtrbohD by Ca2+ and phosphorylation. - J. biol. Chem. 283: 8885-8892, 2008. Go to original source...
  101. Park, C.J., Peng, Y., Chen, X., Dardick, C.: Rice XB15, a protein phosphatase 2C, negatively regulates cell death and XA21-mediated innate immunity. - PLoS Biol. 6: e231, 2008. Go to original source...
  102. Pearce, G., Strydom, D., Johnson, S., Ryan, C.A.: A polypeptide from tomato leaves induces wound-inducible proteinase inhibitor proteins. - Science 253: 895-897, 1991. Go to original source...
  103. Pedley, K.F., Martin, G.B.: Molecular basis of Pto-mediated resistance to bacterial speck disease in tomato. - Annu. Rev. Phytopathol. 41: 215-243, 2003. Go to original source...
  104. Petutschnig, E.K., Jones, A.M., Serazetdinova, L., Lipka, U., Lipka, V.: The LysM-RLK CERK1 is a major chitin binding protein in Arabidopsis thaliana and subject to chitin-induced phosphorylation. - J. biol. Chem. 285: 28902-28911, 2010. Go to original source...
  105. Qi, Z., Verma, R, Gehring, C., Yamaguchi, Y., Zhao, Y., Ryan, C.A., Berkowitz, G.A.: Ca2+ signaling by plant Arabidopsis thaliana Pep peptides depends on AtPepR1, a receptor with guanylyl cyclase activity, and cGMP-activated Ca2+ channels. - Proc. nat. Acad. Sci. USA 107: 21193-21198, 2010. Go to original source...
  106. Qiu, J.L., Fiil, B.K., Petersen, K., Nielsen, H.B., Botanga, C.J., Thorgrimsen, S., Palma, K.: Arabidopsis MAP kinase 4 regulates gene expression through transcription factor release in the nucleus. - EMBO J. 27: 2214-2221, 2008. Go to original source...
  107. Rentel, M.C., Leonelli, L., Dahlbeck, D., Zhao, B., Staskawicz, B.J.: Recognition of the Hyaloperonospora parasitica effector ATR13 triggers resistance against oomycete, bacterial, and viral pathogens. - Proc. nat. Acad. Sci. USA 105: 1091-1096, 2008. Go to original source...
  108. Ricci, P., Bonnet, P., Huet, J.C., Sallantin, M., Beauvais-Cante, F., Bruneteau, M., Billard, V., Michel, G., Pernollet, J.C.: Structure and activity of proteins from pathogenic fungi Phytophthora eliciting necrosis and acquired resistance in tobacco. - Eur. J. Biochem. 183: 555-563, 1989. Go to original source...
  109. Robatzek, S., Chinchilla, D., Boller, T.: Ligand-induced endocytosis of the pattern recognition receptor FLS2 in Arabidopsis. - Genes Dev. 20: 537-542, 2006. Go to original source...
  110. Ron, M., Avni, A.: The receptor for the fungal elicitor ethylene-inducing xylanase is a member of a resistance-like gene family in tomato. - Plant Cell 16: 1604-1615, 2004. Go to original source...
  111. Rosebrock, T.R., Zeng L., Brady, J.J., Robert, B.A., Xiao, F., Martin, G.B.: A bacterial E3 ubiquitin ligase targets a host protein kinase to disrupt plant immunity. - Nature 448: 370-374, 2007. Go to original source...
  112. Scheer, J.M., Ryan, C.A.: The systemin receptor SR160 from Lycopersicon peruvianum is a member of the LRR receptor kinase family. - Proc. nat. Acad. Sci. USA. USA 99: 9585-9590, 2002. Go to original source...
  113. Schulze, B., Mentzel, T., Jehle, A.K., Mueller, K.: Rapid heteromerization and phosphorylation of ligand-activated plant transmembrane receptors and their associated kinase BAK1. - J. biol. Chem. 285: 9444-9451, 2010. Go to original source...
  114. Shao F., Golstein, C., Ade, J., Stoutemyer, M., Dixon, J.E., Innes, R.W.: Cleavage of Arabidopsis PBS1 by a bacterial type III effector. - Science 301: 1230-1233, 2003. Go to original source...
  115. Sharp, J.K., McNeil, M., Albersheim, P.: The primary structures of one elicitor-active and seven elicitor-inactive hexa(beta-D-glucopyranosyl)-D-glucitols isolated from the mycelial walls of Phytophthora megasperma f. sp. glycinea. - J. biol. Chem. 259: 11321-11336, 1984.
  116. Shen, Q.H., Saijo, Y., Mauch, S., Biskup, C.: Nuclear activity of MLA immune receptors links isolate-specific and basal disease-resistance responses. - Science 315: 1098-1103, 2007. Go to original source...
  117. Shen, Q.H., Schulze-Lefert, P.: Rumble in the nuclear jungle: compartmentalization, trafficking, and nuclear action of plant immune receptors. - EMBO J. 26: 4293-4301, 2007. Go to original source...
  118. Shimizu, T., Nakano, T., Takamizawa, D., Desaki, Y., Ishii-Minami, N., Nishizawa, Y., Minami, E., Okada, K., Yamane, H., Kaku, H., Shibuya, N.: Two LysM receptor molecules, CEBiP and OsCERK1, cooperatively regulate chitin elicitor signaling in rice. - Plant J. 64: 204-214, 2010. Go to original source...
  119. Song, W.Y., Wang, G.L., Chen, L.L., Kim, H.S.: A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. - Science 270: 1804-1806, 1995.
  120. Stefani, E., Bazzi, C., Mazzucchi, U.: Modification of the Pseudomonas syringae pv. tabaci tobacco leaf interaction by bacterial oligosaccharides. - Physiol. mol. Plant Pathol. 45: 397-406, 1994. Go to original source...
  121. Suarez-Rodriguez, M.C., Adams-Phillips, L., Liu, Y., Wang, H.: MEKK1 is required for flg22-induced MPK4 activation in Arabidopsis plants. - Plant Physiol. 143: 661-669, 2007.
  122. Takahashi, A., Casais, C., Ichimura, K., Shirasu, K.: HSP90 interacts with RAR1 and SGT1, and is essential for RPS2-mediated resistance in Arabidopsis. - Proc. nat. Acad. Sci. USA 100: 11777-11782, 2003. Go to original source...
  123. Takken, F.L., Albrecht, M., Tameling, W.I.: Resistance proteins: molecular switches of plant defence. - Curr. Opin. Plant Biol. 9: 383-390, 2006. Go to original source...
  124. Takken, F.L., Tameling, W.I.: To nibble at plant resistance proteins. - Science 324: 744-746, 2009. Go to original source...
  125. Tanaka, S., Ichikawa, A., Yamada, K., Tsuji, G., Nishiuchi, T., Mori, M., Koga, H., Nishizawa, Y., O'Connell, R., Kubo, Y.: HvCEBiP, a gene homologous to rice chitin receptor CEBiP, contributes to basal resistance of barley to Magnaporthe oryzae. - BMC Plant Biol. 10: 288, 2010 Go to original source...
  126. Torres, M.A., Dangl, J.L.: Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. - Curr. Opin. Plant Biol. 8: 397-403, 2005. Go to original source...
  127. Umemoto, N., Kakitani, M., Iwamatsu, A., Yoshikawa, M., Yamaoka, N., Ishida, I.: The structure and function of a soybean beta-glucan-elicitor-binding protein. - Proc. nat. Acad. Sci. USA 94: 1029-1034, 1997. Go to original source...
  128. Van der Hoorn, R.A., Kamoun, S.: From guard to decoy: a new model for perception of plant pathogen effectors. - Plant Cell 20: 2009-2017, 2008.
  129. Wan, J., Zhang, S., Stacey, G.: Activation of a mitogen-activated protein kinase pathway in Arabidopsis by chitin. - Mol. Plant Pathol. 5: 125-135, 2004. Go to original source...
  130. Wang, G.L., Ruan, D.L., Song, W.Y., Sideris, S., Chen, L., Pi, L.Y., Zhang, S., Zhang, Z., Fauquet, C., Gaut, B.S., Whalen, M.C., Ronald, P.C.: Xa21D encodes a receptor-like molecule with a leucine-rich repeat domain that determines race-specific recognition and is subject to adaptive evolution. - Plant Cell 10:765-79, 1998. Go to original source...
  131. Wang, Y., Li, J., Hou, S., Wang, X., Li, Y., Ren, D., Chen, S., Tang, X., Zhou, J-M.: A Pseudomonas syringae ADP-ribosyltransferase jnhibits Arabidopsis mitogen-activated protein kinase kinases. - Plant Cell 22: 2033-2044, 2010. Go to original source...
  132. Whitham, S., Dinesh-Kumar, S.P., Choi, D., Hehl, R., Corr, C., Baker, B.J.: The product of the tobacco mosaic virus resistance gene N: similarity to Toll and the interlukin-1 receptor. - Cell 78: 1101-1115, 1994. Go to original source...
  133. Wilton, M., Subramaniam, R., Elmore, J., Felsensteiner, C., Coaker, G., Desveaux, D. The type III effector HopF2Pto targets Arabidopsis RIN4 protein to promote Pseudomonas syringae virulence. - Proc. Nat. Acad. Sci. USA 107: 2349-2354, 2010. Go to original source...
  134. Wirthmueller, L., Zhang Y., Jones J.D., Parker, J.E.: Nuclear accumulation of the Arabidopsis immune receptor RPS4 is necessary for triggering EDS1-dependent defense. - Curr. Biol. 17: 2023-2029, 2007. Go to original source...
  135. Woltering, E.J.: Death proteases come alive. - Trends Plant Sci. 9: 469-472, 2004. Go to original source...
  136. Xiang, T., Zong, N., Zou, Y., Wu, Y., Zhang, J., Xing, W.: Pseudomonas syringae effector AvrPto blocks innate immunity by targeting receptor kinases. - Curr. Biol. 18: 74-80, 2008. Go to original source...
  137. Xiao, F., He, P., Abramovitch, R.B., Dawson, J.E., Nicholson, L.K., Sheen, J., Martin, G.B.: The N-terminal region of Pseudomonas type III effector AvrPtoB elicits Pto-dependent immunity and has two distinct virulence determinants. - Plant J. 52: 595-614, 2007. Go to original source...
  138. Yamaguchi, T., Yamada, A., Hong, N., Ogawa, T., Ishii, T., Shibuya, N.: Differences in the recognition of glucan elicitor signals between rice and soybean: beta-glucan fragments from the rice blast disease fungus Pyricularia oryzae that elicit phytoalexin biosynthesis in suspension-cultured rice cells. - Plant Cell 12: 817-826, 2000. Go to original source...
  139. Yamaguchi, Y., Pearce, G., Ryan, C.A.: The cell surface leucine-rich repeat receptor for AtPep1, an endogenous peptide elicitor in Arabidopsis, is functional in transgenic tobacco cells. - Proc. nat. Acad. Sci. USA 103: 10104-10109, 2006. Go to original source...
  140. Zeidler, D., Zahringer, U., Gerber, I., Dubery, I., Hartung, T., Bors, W., Hutzler, P., Durner, J.: Innate immunity in Arabidopsis thaliana: lipopolysaccharides activate nitric oxide synthase (NOS) and induce defense genes. Proc. nat. Acad. Sci. USA 101: 15811-15816, 2004. Go to original source...
  141. Zeng, W., He, S.Y.: A prominent role of the flagellin receptor FLAGELLIN-SENSING2 in mediating stomatal response to Pseudomonas syringae pv. tomato DC3000 in Arabidopsis. - Plant Physiol. 153: 1188-1198, 2010. Go to original source...
  142. Zhang, J., Shao, F., Li, Y., Cui, H., Chen, L., Li, H.: A Pseudomonas syringae effector inactivates MAPKs to suppress PAMP-induced immunity in plants. - Cell Host Microbe 1: 175-185, 2007. Go to original source...
  143. Zhang, J., Li, W., Xiang, T., Liu, Z., Laluk, K.: Receptor-like cytoplasmic kinases integrate signaling from multiple plant immune receptors and are targeted by a Pseudomonas syringae effector. - Cell Host Microbe 7: 290-301, 2010. Go to original source...
  144. Zhang, S., Du, H., Klessig, D.F.: Activation of the tobacco SIP kinase by both a cell wall-derived carbohydrate elicitor and purified proteinaceous elicitins from Phytophthora spp. - Plant Cell 10: 435-450, 1998. Go to original source...
  145. Zhang, W., He, S.Y., Assmann, S.M.: The plant innate immunity response in stomatal guard cells invokes G-proteindependent ion channel regulation. - Plant J. 122: 73-79, 2008. Go to original source...
  146. Zhu, Z., Xu F., Zhang, Y., Cheng, Y.T., Wiermer, M., Li, X., Zhang, Y.: Arabidopsis resistance protein SNC1 activates immune responses through association with a transcriptional corepressor. - Proc. Natl. Acad. Sci. USA 107: 13960-13965, 2010. Go to original source...
  147. Zipfel, C., Kunze, G., Chinchilla, D., Caniard, A., Boller, T., Felix, G.: Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. - Cell 125: 749-760, 2006. Go to original source...