Biologia plantarum 2012, 56:97-104 | DOI: 10.1007/s10535-012-0022-5

The antioxidative role of anthocyanins in Arabidopsis under high-irradiance

Q. Zhang1, L. -J. Su1, J. -W. Chen2, X. -Q. Zeng1, B. -Y. Sun1, C. -L. Peng1,*
1 College of Life Science, South China Normal University, Guangzhou, Guangdong, P.R. China
2 College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, P.R. China

To uncover the potential antioxidative role of anthocyanins in vivo in protecting photosynthetic tissues from photoinhibition, the effects of high irradiance [HI, 1300 μmol(photon) m-2 s-1] were studied using detached leaves derived from Arabidopsis wild-type (WT) and the mutant deficient in anthocyanin biosynthesis (tt3tt4). HI stress caused decreased chlorophyll content and photochemical efficiency, but increased cell-membrane leakage and contents of hydrogen peroxide and superoxide radical in the leaves of both Arabidopsis phenotypes, but the WT plants showed better HI tolerance than tt3tt4 mutant. HI caused a significant increase in the 1,1-diphenyl-2-picrylhydrazyl scavenging capacity in WT but not in the tt3tt4 mutant. The anthocyanins could not contribute substantially to light-shielding during the periods of HI stress, because the anthocyanin content in WT was very low and the colour of leaves was the same as in the tt3tt4 mutant. Thus, it was assumed that the better HI tolerance in WT was mostly related to the potential antioxidative role of anthocyanins.

Keywords: chlorophyll fluorescence imaging; hydrogen peroxide; membrane leakage; mutant; superoxide radical
Subjects: hydrogen peroxide; membrane leakage; mutant; superoxide radical; anthocyanins; electrolyte leakage; chlorophyll fluorescence; chlorophyll; carotenoids; phenolics; flavonoids; electron transport rate
Species: Arabidopsis thaliana

Received: June 8, 2010; Accepted: March 16, 2011; Published: March 1, 2012Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Zhang, Q., Su, L.-J., Chen, J.-W., Zeng, X.-Q., Sun, B.-Y., & Peng, C.-L. (2012). The antioxidative role of anthocyanins in Arabidopsis under high-irradiance. Biologia plantarum56(1), 97-104. doi: 10.1007/s10535-012-0022-5.
Download citation

References

  1. Aarti, D., Tanaka, R., Ito, H., Tanaka, A.: High light inhibits chlorophyll biosynthesis at the level of 5-aminolevulinate synthesis during de-etiolation in cucumber (Cucumis sativus) cotyledons. - Photochem. Photobiol. 83: 171-176, 2007. Go to original source...
  2. Agati, G., Meyer S., Matteini P., Cerovic Z.G.: Assessment of anthocyanins in grape (Vitis vinifera L.) berries using a noninvasive chlorophyll fluorescence method. - J. Agr. Food Chem. 55: 1053-1061, 2007. Go to original source...
  3. Albert, N.W., Lewis, D.H., Irving, L.J., Jameson, P.E., Davies, K.M.: Light-induced vegetative anthocyanin pigmentation in Petunia. - J. exp. Bot. 60: 2191-2202, 2009. Go to original source...
  4. Archetti, M., Döring, T.F., Hagen, S.B., Hughes, N.M., Leather, S.R., Lee, D.W., Lev-Yadun, S., Manetas, Y., Ougham, H.J., Schaberg, P.G., Thomas, H.: Unravelling the evolution of autumn colours: an interdisciplinary approach. - Trends Ecol. Evol. 24: 166-173, 2009. Go to original source...
  5. Aro, E.M., Virgin, I., Andersson, B.: Photoinhibition of photosystem II: Inactivation, protein damage and turnover. - Biochim. biophys. Acta 1143: 113-134, 1993. Go to original source...
  6. Beggs, C.J., Wellmann, E.: Photocontrol of flavonoid biosynthesis. - In: Kendrick, R.E., Kronenberg, G.H.M. (ed.): Photomorphogenesis in Plants. 2nd Ed. Pp. 733-750. Kluwer Academic Press, Dordrecht - Boston - London 1994.
  7. Chalker-Scott, L.: Environmental significance of anthocyanins in plant stress responses. - Photochem. Photobiol. 70: 1-9, 1999. Go to original source...
  8. Christie, P.J., Alfenito, M.R., Walbot, V.: Impact of low-temperature stress on general phenylpropanoid and anthocyanin pathways: enhancement of transcript abundance and anthocyanin pigmentation in maize. - Planta 194: 541-549, 1994. Go to original source...
  9. Close, D.C., Davies, N.W., Beadle, C.L.: Temporal variation of tannins (galloylglucoses), flavonols and anthocyanins in leaves of Eucalyptus nitens seedlings: implications for light attenuation and antioxidant activities. - Aust. J. P1ant Physiol. 28: 1-10, 2001. Go to original source...
  10. De Jong, H.: Inheritance of anthocyanin pigmentation in the cultivated potato: a critical review. - Amer. J. Potato Res. 68: 585-593, 1991. Go to original source...
  11. Ding, W., Song, L., Wang, X., Bi, Y.: Effect of abscisic acid on heat stress tolerance in the calli from two ecotypes of Phragmites communis. - Biol. Plant. 54: 607-613, 2010. Go to original source...
  12. Dixon, R.A., Paiva, N.L.: Stress-induced phenylpropanoid metabolism. - Plant Cell 7: 1085-1097, 1995. Go to original source...
  13. Field, T., Lee, D., Holbrook, N.: Why leaves turn red in autumn. The role of anthocyanins in senescing leaves of red-osier dogwood. - Plant Physiol. 127: 556-574, 2001. Go to original source...
  14. Fukumoto, L.R., Mazza, G.: Assessing antioxidant and prooxidant activities of phenolic compounds. - J. Agr. Food Chem. 48: 3597-3604, 2000. Go to original source...
  15. Garcia-Alonso, M., Rimbach, G., Sasai, M., Nakahara, M., Matsugo, S., Uchida, Y., Rivas-Gonzalo, J.C., De Pascual-Teresa, S.: Electron spin resonance spectroscopy studies on the free radical scavenging activity of wine anthocyanins and pyranoanthocyanins. - Mol. Nutr. Food Res. 49: 1112-1119, 2005. Go to original source...
  16. Gould, K.S., Kuhn, D.N., Lee, D.W., Oberbauer, S.F.: Why leaves are sometimes red. - Nature 378: 241-242, 1995. Go to original source...
  17. Gould, K.S., Lister, C.: Flavonoid functions in plants. - In: Andersen, O.M., Markham, K.R. (ed.): Flavonoids: Chemistry, Biochemistry and Applications. Pp. 397-411. CRC Press, Boca Raton 2006.
  18. Gould, K.S., McKelvie, J., Markham, K.R.: Do anthocyanins function as antioxidants in leaves: imaging of H2O2 in red and green leaves after mechanical injury. - Plant Cell Environ. 25: 1261-1269, 2002a. Go to original source...
  19. Gould, K.S., Vogelmann, T.C., Han, T., Clearwater, M.J.: Profiles of photosynthesis within red and green leaves of Quintinia serrata A. - Cunn. Physiol. Plant. 116: 127-133, 2002b. Go to original source...
  20. Havaux, M., Niyogi, K.K.: The violaxanthin cycle protects plants from photooxidative damage by more than one mechanism. - Proc. nat. Acad. Sci. USA 96: 8762-8767, 1999. Go to original source...
  21. Hidema, J., Makino, A., Kurita, Y., Mae, T., Ojima, K.: Changes in the levels of chlorophyll and light-harvesting chlorophyll a/b protein of PSII in rice leaves aged under different irradiances from full expansion through senescence. - Plant Cell Physiol. 33: 1209-1214, 1992.
  22. Hoch, W.A., Zeldin, E.L., McCown, B.H.: Physiological significance of anthocyanins during autumnal leaf senescence. - Tree Physiol. 21: 1-8, 2001. Go to original source...
  23. Huner, N.P.A., Öquist, G., Sarhan, F.: Energy balance and acclimation to light and cold. - Trends Plant Sci. 3: 224-230, 1998. Go to original source...
  24. Hutzler, P., Fischbach, R., Heller, W., Jungblut, T.P., Reuber, S., Schmitz, R., Veit, M., Weissenbock, G., Schnitzler, J.P.: Tissue location of phenolic compounds in plants by confocal laser scanning microscopy. - J. exp. Bot. 49: 953-965, 1998. Go to original source...
  25. Ismail, G.S.M., Mohamed, H.E.: Alteration in growth and thylakoid membrane lipid composition of Azolla caroliniana under phosphate deficiency. - Biol. Plant. 54: 671-676, 2010. Go to original source...
  26. Lee, D.W., Collins, T.M.: Phylogenetic and ontogenetic influences on the distribution of anthocyanins and betacyanins in leaves of tropical plants. - Int. J. Plant Sci. 162: 1141-1153, 2001. Go to original source...
  27. Lichtenthaler, H.K., Wellburn, A.R.: Determinations of total carotenoids and chlorophyll a and b in leaf extracts of different solvents. - Biochem. Soc. Trans. 603: 591-592, 1983. Go to original source...
  28. Lu, X., Zhou, W., Gao, F.: Chromosomal location of 45S rDNA and dfr gene in Citrus sinensis. - Biol. Plant. 54: 798-800, 2010. Go to original source...
  29. Luo, Y., Li, F., Wang, G.P., Yang, X.H., Wang, W.: Exogenously-supplied trehalose protects thylakoid membranes of winter wheat from heat-induced damage. - Biol. Plant. 54: 495-501, 2010. Go to original source...
  30. Manetas, Y.: Why some leaves are anthocyanic and why most anthocyanic leaves are red. - Flora 201: 163-177, 2006. Go to original source...
  31. Manetas, Y., Petropoulou, Y., Psaras, G.K., Drinia, A.: Exposed red (anthocyanic) leaves of Quercus coccifera display shade characteristics. - Funct. Plant Biol. 30: 265-270, 2003. Go to original source...
  32. Meng, X.C., Xing, T., Wang, X.J.: The role of light in the regulation of anthocyanin accumulation in Gerbera hybrida. - Plant Growth Regul. 44: 243-250, 2004. Go to original source...
  33. Merzlyak, M.N., Chivkunova, O.B., Solovchenko, A.E., Naqvi, K.R.: Light absorption by anthocyanin in juvenile, stressed, and senescing leaves. - J. exp. Bot. 59: 3903-3911, 2008. Go to original source...
  34. Neil, S., Gould, K.S., Kilmartin, P.A., Mitchell, K.A., Markham, K.R.: Antioxidant activities of red versus green leaves in Elatostema rugosum. - Plant Cell Environ. 25: 539-547, 2002. Go to original source...
  35. Neill, S.O., Gould, K.S.: Anthocyanins in leaves: light attenuators or antioxidant. - Funct Plant Biol. 30: 865-873, 2003. Go to original source...
  36. Okada, K., Inoue, Y., Satoh, K., Katoh, S.: Effects of light on degradation of chlorophyll and proteins during senescence of detached rice leaves. - Plant Cell Physiol. 33: 1183-1191, 1992.
  37. Peer, W.A., Brown, D.E., Tague, B.W.: Flavonoid accumulation patterns of transparent testa mutants of Arabidopsis. - Plant Physiol. 126: 536-548, 2001. Go to original source...
  38. Peng, C.L., Chen, S.W., Lin, Z.F., Lin, G.Z.: [Detection of antioxidative capacity in plants by scavenging organic free radical DPPH.] - Progr. Biochem. Biophys. 27: 658-661, 2000. [In Chin.]
  39. Peng, C.L., Lin, Z.F., Lin, G.Z., Chen, S.W.: The anti-photooxidation of anthocyanin-rice leaves of a purple rice cultivar. - Sci. China Ser. C 49: 543-551, 2006. Go to original source...
  40. Pietrini, F., Massaeei, A: Leaf anthocyanin content changes in Zea mays L. grown at low temperature: significance for the relationship between quantum yield of PS II and the apparent quantum yield of CO2 assimilation. - Photosynth. Res. 58: 213-219, 1998. Go to original source...
  41. Piovan, A., Filippini, R.: Anthocyanins in Catharanthus roseus in vivo and in vitro: a review. - Phytochem. Rev. 6: 235-242, 2007. Go to original source...
  42. Rascher, U., Hütt, M.T., Siebke, K., Osmond, B., Beck, F., Lüttge, U.: Spatio-temporal variation of metabolism in a plant circadian rhythm: the biological clock as an assembly of coupled individual oscillators. - Proc. nat. Acad. Sci. USA 98: 11801-11805, 2001. Go to original source...
  43. Romero-Puertas, M.C., Rodriguez-Serrano, M., Corpas, F.J., Gómez, M., Delrío, L.A., Sandalio, L.M.: Cadmium-induced subcellular accumulation of {ie104-1} and H2O2 in pea leaves. - Plant Cell Environ. 27: 1122-1134, 2004. Go to original source...
  44. Saunders, J.A., McClure, J.W.: Distribution of flavonoids in chloroplasts of 25 species of vascular plants. - Phytochemistry 15: 809-810, 1976. Go to original source...
  45. Schreiber, U., Gademann, R., Ralph, P.J., Larkum, A.W.D.: Assessment of photosynthetic performance of prochloron in Lissoclinum patella by in situ and in hospite chlorophyll fluorescence measurements. - Plant Cell Physiol. 38: 945-951, 1997. Go to original source...
  46. Shao, L., Shu, Z., Sun, S.L., Peng, C.L., Lin, Z.F., Yang, C.W.: Enhanced sensitivity of Arabidopsis anthocyanin mutants to photooxidation: a study with fluorescence imaging. - Funct. Plant Biol. 35: 714-724, 2008. Go to original source...
  47. Shirley, B.W., Qubasek, W.L., Storz, G., Bruggemann, E., Koornneef, M., Ausubel, F.M., Goodman, H.M.: Analysis of Arabidopsis mutants deficient in flavonoid biosynthesis. - Plant J. 8: 659-671, 1995. Go to original source...
  48. Siebke, K., Weis, E.: Assimilation images of leaves of Glechoma hederacea: analysis of nonsynchronous stomata related oscillations. - Planta 196: 155-165, 1995. Go to original source...
  49. Smillie, R.M., Hetherington, S.E.: Photoabatement by anthocyanin shields photosynthetic systems from light stress. - Photosynthetica 36: 451-463, 1999. Go to original source...
  50. Steyn, W.J., Wand, S.J.E., Holcroft, D.M., Jacobs, G.: Anthocyanins in vegetative tissues: a proposed unified function in photoprotection. - New Phytol. 155: 349-361, 2002. Go to original source...
  51. Takahashi, M.A., Asada, K.: Superoxide anion permeability of phospholipid-membranes and chloroplast thylacoids. - Arch. Biochem. Biophys. 226: 558-566, 1983. Go to original source...
  52. Tsuda, T., Shiga, K., Ohshima, K.: Inhibition of lipid peroxidation and the active oxygen radical scavenging effect of anthocyanin pigment isolated from Phaseolus vulgaris L. - Biochem. Pharmacol. 52: 1033-1039, 1996. Go to original source...
  53. Wade, H.K., Sohal, A.K., Jenkins, G.I.: Arabidopsis ICX1 is a negative regulator of several pathways regulating flavonoid biosynthesis genes. - Plant Physiol. 131: 707-715, 2003. Go to original source...
  54. Wang, H., Cao, G.H., Prior, R.L.: Oxygen radical absorbing capacity of anthocyanins. - J. Agr. Food Chem. 45: 304-309, 1997. Go to original source...
  55. Yamasaki, H., Sakihama, Y., Ikehara, N.: Flavonoid-peroxidase reaction as a detoxification mechanism of plant cells against H2O2. - Plant Physiol. 115: 1405-1512, 1997. Go to original source...
  56. Zeng, X.Q., Chow, W.S., Su, L.J., Peng, X.X., Peng, C.L.: Protective effect of supplemental anthocyanins on Arabidopsis leaves under high light. - Physiol. Plant. 138: 215-225, 2010. Go to original source...
  57. Zhao, B.L.: [Oxygen free radicals and natural antioxidants]. - Science Press, Beijing 1999. [In Chin.]
  58. Zuluaga, D.L., Gonzali, S., Loreti, E., Pucciariello, C., Degl'Innocenti, E., Guidi, L., Alpi, A., Perata, P.: Arabidopsis thaliana MYB75/PAP1 transcription factor induces anthocyanin production in transgenic tomato plants. - Funct. Plant Biol. 35: 606-618, 2008. Go to original source...