Biologia plantarum 2010, 54:597-600 | DOI: 10.1007/s10535-010-0108-x

The effect of 2,4-dichlorophenol and pentachlorophenol on antioxidant system in the leaves of Phalaris arudinacea

J. Michałowicz1,*, H. Urbanek2, B. Bukowska1, W. Duda1
1 Department of Environmental Pollution Biophysics, University of Łódź, Łódź, Poland
2 Department of Plant Physiology and Biochemistry, University of Łódź, Łódź, Poland

The purpose of this work was to evaluate the effect of 2,4-dichlorophenol (2,4-DCP) and pentachlorophenol (PCP) on the activity of antioxidative system and lipid peroxidation in the leaves of reed canary grass (Phalaris arudinacea). The activity of catalase (CAT), ascorbate peroxidase (APX), guaiacol peroxidase (GPX), glutathione reductase (GR) and glutathione S-transferase (GST) as well as the content of glutathione, ascorbate and phenolic compounds were determined. An induced-increase in the APX, CAT, GPX and GR activities was stronger for PCP, while a significant increase in the GST activity was noted only for 2,4-DCP. Both compounds increased the content of phenolic compounds, oxidized and reduced glutathione as well as the content of ascorbic acid. PCP induced stronger increase in lipid peroxidation than 2,4-DCP. The observed changes revealed that chlorophenols induce oxidative stress and oxidative damage in the leaves of reed canary grass.

Keywords: reed canary grass; chlorinated phenols; enzymatic antioxidants; lipid peroxidation; non-enzymatic antioxidants
Subjects: ascorbate peroxidase; ascorbic acid; catalase; dehydroascorbate; 2,4-dichlorphenol; glutathione; glutathione reductase; glutathione-S-transferase; lipid peroxidation; malondialdehyde; peroxidase; Phalaris arudinacea; phenolics

Received: April 12, 2009; Accepted: October 17, 2009; Published: September 1, 2010Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Michałowicz, J., Urbanek, H., Bukowska, B., & Duda, W. (2010). The effect of 2,4-dichlorophenol and pentachlorophenol on antioxidant system in the leaves of Phalaris arudinacea. Biologia plantarum54(3), 597-600. doi: 10.1007/s10535-010-0108-x.
Download citation

References

  1. Aebi, H.: Catalase in vitro. - Methods Enzymol. 105: 121-126, 1984. Go to original source...
  2. Ammar, W.B., Nouairi, I., Zarrouk, M., Ghorrbel, M., Jemal, F.: Antioxidative response to cadmium in roots and leaves of tomato plants. - Biol. Plant. 52: 727-731, 2008. Go to original source...
  3. Asada, K.: The water-water cycle in chloroplasts: scavenging of active oxygen and dissipation of excess photons. - Annu. Rev. Plant Physiol. Plant mol. Biol. 50: 601-639, 1999. Go to original source...
  4. Bat'ková, P., Pospíšilová, J., Synková, H.: Production of reactive oxygen species and development of antioxidative system during in vitro growth and ex vitro transfer. - Biol. Plant. 52: 413-422, 2008.
  5. Beutler, E. (ed.): Glutathione in red blood cell metabolism. A Manual of Biochemical Methods. - Grune & Stratton, New York 1975.
  6. Bradford, M.: A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. - Ann. Biochem. 72: 248-254, 1976. Go to original source...
  7. Cernakowa, M, Zemanovicova, A.: Microbial activity of soil contaminated with chlorinated phenol derivatives. - Fol. Microbiol. 43: 411-421, 1998. Go to original source...
  8. Chance, B., Maehly, A. (ed.): Assay of Catalases and Peroxidases. - Academic Press, New York 1956.
  9. Dhinsa, R, Plumb-Dhinsa, P, Thorpe, T.: Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation and decreased levels of superoxide dismutase and catalase. - J. exp. Bot. 32: 93-101, 1981. Go to original source...
  10. Griffith, O.: Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. - Ann. Biochem. 106: 207-212, 1980. Go to original source...
  11. Herman, B., Biczak, R., Gurgul, E.: Effect of 1,10-phenantroline on peroxidase and catalase activity and chlorophyll, sugar and ascorbic acid contents. - Biol. Plant. 4: 607-611, 1998. Go to original source...
  12. Laine, M, Jorgensen, K.: Straw compost and bioremediated soil as inocula for the bioremedation of chlorophenol - contaminated soil. - Appl. Environ. Microbiol. 54: 1507-1513, 1996.
  13. Lechno, S, Zamski, E, Tel Or, E.: Salt stress-induced response in cucumber plants. - J. Plant Physiol. 150: 206-211, 1997. Go to original source...
  14. Mars, K.: The functions and regulations of glutathione S-transferases in plants. - Annu. Rev. Plant Physiol. Plant mol. Biol. 47: 127-158, 1996. Go to original source...
  15. Michałowicz, J, Duda, W.: Phenols - sources and toxicity. - Pol. J. environ. Stud. 16: 347-362, 2007.
  16. Michałowicz, J., Posmyk, M., Duda, W.: Chlorophenols induce lipid peroxidation and change antioxidant parameters in the leaves of wheat (Triticum aestivum L.). - J. Plant Physiol. 166: 559-568, 2009. Go to original source...
  17. Nakano, Y, Asada, K.: Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. - Plant Cell Physiol. 22: 867-880, 1981.
  18. Navari-Izzo, F, Izzo, R.: Induction of enzyme activities and antioxidant production in barley plants as a result of SO2 fumigation. - Plant Sci. 96: 31-40, 1994. Go to original source...
  19. Noctor, G., Arisi, A., Jouanin, L., Kunert, K., Rennenberg, H., Foyer, C.: Glutathione: biosynthesis, metabolism and relationship to stress tolerance explored in transformed plants. - J. exp. Bot. 49: 623-647, 1998. Go to original source...
  20. Okamura, M.: An improved method for determination of L-ascorbic acid and L-dehydro-ascorbic acid in blood plasma. - Clin. chim. Acta 103: 259-268, 1980.
  21. Pasqualini, V., Robles, C., Garcino, S., Greff, S., Bousquet-Melou, A., Bonin, G.: Phenolic compounds content in Pinus halepensis Mill. needles: a bioindicator of air pollution. - Chemosphere 52: 239-248, 2003. Go to original source...
  22. Polidoros, A, Scandalios, J.: Role of hydrogen peroxide and different classes of antioxidants in the regulation of catalase and glutathione S-transferase gene expression in maize (Zea mays L). - Plant Physiol. 106: 112-120, 1999. Go to original source...
  23. Rhizsky, L., Hallak-Herr, E., Van Breusegen, F., Rachmilevich, S., Barr, J., Rodermel, S., Inze, S., Mittler, R.: Double antisense plants lacking ascorbate peroxidase and catalase are less sensitive to oxidative stress than single antisense plants lacking ascorbate peroxidase and catalase. - Planta 32: 329-342, 2002.
  24. Roy, S, Ihantola, R, Hanninen, O.: Peroxidase activity in lake macrophytes and its relation to pollution tolerance. - Environ. exp. Bot. 32: 457-464, 1992. Go to original source...
  25. Różaśki, L. (ed.): Przemiany Pestycydów w Organizmach Żywych i Środowisku. [Transformations of Pesticides in Living Organisms and the Environment.] - Agra-Enviro Lab, Poznaó 1998. [In Pol.]
  26. Saladin, G., Clement, C., Magne, C.: Stress effects of flumioxazin herbicide on grapevine (Vitis vinifera L.) grown in vitro. - Plant Cell Rep. 21: 1221-1227, 2003.
  27. Tausz, T., Šircelj, H., Grill, D.: The glutathione system as a stress marker in plant ecophysiology: is a stress-response concept valid? - J. exp. Bot. 55: 1955-1962, 2004.
  28. Tsai, Y.-C., Hong, C.-Y., Liu, L.-F., Kao, C.: Expression of ascorbate and glutathione reductase in roots of rice seedlings in response to NaCl and H2O2. - J. Plant Physiol. 162: 291-299, 2004.
  29. Urbanek, H., Majorowicz, H., Zalewski, M., Saniewski, M.: Induction of glutathione S-transferase and glutathione by toxic compounds and elicitors in reed canary grass. - Biotechnol. Lett. 27: 911-914, 2005. Go to original source...
  30. Zhao, F., Zhang, H.: Salt and paraquat stress tolerance results from co-expression of the Suaeda salsa glutathione S-transferase and catalase in transgenic rice. - Chemosphere 86: 349-358, 2006. Go to original source...