Biologia plantarum 54:97-104, 2010 | DOI: 10.1007/s10535-010-0014-2

Carbon nutrition of mature green orchid Serapias strictiflora and its mycorrhizal fungus Epulorhiza sp.

K. Látalová1, M. Baláž1,*
1 Faculty of Science, Masaryk University, Brno, Czech Republic

We studied the nutritional modes of the orchid Serapias strictiflora and its mycorrhizal fungus Epulorhiza sp. using the differences in carbon isotopic composition (δ13C) of C3 orchid and C4 maize tissues. We found that if cultivated in substrate lacking any organic compounds, the mycorrhizal extraradical mycelia (δ13C = -26.3 ± 0.2 ‰) developed well, despite being fully dependent on nutrition from orchid roots (δ13C = -28.6 ± 0.1 ‰). If the mycorrhizal fungus had additional access to and colonized decaying maize roots (δ13C = -14.6 ± 0.1 ‰), its isotopic composition (δ13C = -21.6 ± 0.4 ‰) reflected a mixture of biotrophy and saprotrophy. No statistically significant differences in δ13C of new storage tubers were found between Epulorhiza-associated orchids with (δ13C = -28.2 ± 0.1 ‰) and without access to maize roots (δ13C = -28.6 ± 0.2 ‰). We conclude that autotrophy is the predominant nutritional mode of mature S. strictiflora plants and that they supply their mycorrhizal fungus with substantial amount of carbon (69 ± 3 % of the fungus demand), even if the fungus feeds saprotrophically.

Keywords: δ13C; biotrophy; extraradical mycelium; heterotrophy; saprotrophy
Subjects: carbon nutrition; Epulorhiza sp.; maize; mycorrhiza; root anatomy; Serapias strictiflora; Zea mays

Received: December 22, 2008; Accepted: July 29, 2009; Published: March 1, 2010Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Látalová, K., & Baláž, M. (2010). Carbon nutrition of mature green orchid Serapias strictiflora and its mycorrhizal fungus Epulorhiza sp. Biologia plantarum54(1), 97-104. doi: 10.1007/s10535-010-0014-2.
Download citation

References

  1. Alexander, C., Hadley, G.: Carbon movement between host and mycorrhizal endophyte during the development of the orchid Goodyera repens Br. - New Phytol. 101: 657-665, 1985. Go to original source...
  2. Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J.: Gapped BLAST and PSIBLAST: a new generation of protein database search programs. - Nucl. Acids Res. 25: 3389-3402, 1997. Go to original source...
  3. Baláž, M., Vosátka, M.: A novel inserted membrane technique for studies of mycorrhizal extraradical mycelium. - Mycorrhiza 11: 291-296, 2001. Go to original source...
  4. Bidartondo, M.I., Burghardt, B., Gebauer, G., Bruns, T.D., Read, D.J.: Changing partners in the dark: isotopic and molecular evidence of ectomycorrhizal liaison between forest orchids and trees. - Proc. roy. Soc. London B 271: 1799-1806, 2004. Go to original source...
  5. Boström, B., Comstedt, D., Ekblad, A.: Can isotopic fractionation during respiration explain the 13C-enriched sporocarps of ectomycorrhizal and saprotrophic fungi? - New Phytol. 177: 1012-1019, 2008. Go to original source...
  6. Bowling, D.R., Pataki, D.E., Randerson, J.T.: Carbon isotopes in terrestrial ecosystem pools and CO2 fluxes. - New Phytol. 178: 24-40, 2008. Go to original source...
  7. Cameron, D.D., Johnson, I., Read, D.J., Leake, J.R.: Giving and receiving: measuring the carbon cost of mycorrhizas in the green orchid, Goodyera repens. - New Phytol. 180: 176-184, 2008. Go to original source...
  8. Cameron, D.D., Leake, J.R., Read, D.J.: Mutualistic mycorrhiza in orchids: evidence from plant-fungus carbon and nitrogen transfers in the green-leaved terrestrial orchid Goodyera repens. - New Phytol. 171: 405-416, 2006. Go to original source...
  9. Čuříková, M., Látr, A., Vosátka, M.: Growth and viability of mycorrhizal extraradical mycelia associated with three temperate orchid species. - Biologia (Sect. Bot.) 64: 63-68, 2009.
  10. Dearnaley, J.D.W.: Further advances in orchid mycorrhizal research. - Mycorrhiza 17: 475-486, 2007. Go to original source...
  11. Domsch, K.H., Gams, W., Anderson, T.H. (ed.): Compendium of Soil Fungi. - IHW-Verlag, Eching 1993.
  12. Fry, B. (ed.): Stable Isotope Ecology. - Springer, New York 2006.
  13. Gardes, M., Bruns, T.D.: ITS primers with enhanced specificity for basidiomycetes: application to the identification of mycorrhizae and rusts. - Mol. Ecol. 2: 113-118, 1993. Go to original source...
  14. Gebauer, G., Meyer, M.: 15N and 13C natural abundance of autotrophic and myco-heterotrophic orchids provides insight into nitrogen and carbon gain from fungal association. - New Phytol. 160: 209-223, 2003. Go to original source...
  15. Gleixner, G., Danier, H.J., Werner, R.A., Schmidt, H.L. Correlations between the 13C content of primary and secondary plant products in different cell compartments and that in decomposing Basidomycetes. - Plant Physiol. 102: 1287-1290, 1993. Go to original source...
  16. Hadley, G., Purves, S.: Movement of 14carbon from host to fungus in orchid mycorrhiza. - New Phytol. 73: 475-482, 1974. Go to original source...
  17. Hobbie, E.A., Colpaert, J.V.: Nitrogen availability and mycorrhizal colonization influence water use efficiency and carbon isotope patterns in Pinus sylvestris. - New Phytol. 164: 515-525, 2004. Go to original source...
  18. Hobbie, E.A., Macko, S.A., Shugart, H.H.: Insights into nitrogen and carbon dynamics of ectomycorrhizal and saprotrophic fungi from isotopic evidence. - Oecologia 118: 353-360, 1999. Go to original source...
  19. Hynson, N.A., Preiss, K., Gebauer, G.: Is it better to give than to receive? A stable isotope perspective on orchid-fungal carbon transport in the green orchid species Goodyera repens and Goodyera oblongifolia. - New Phytol. 182: 8-11, 2009. Go to original source...
  20. Johnson, D.: Resolving uncertainty in the carbon economy of mycorrhizal fungi. - New Phytol. 180: 3-5, 2008. Go to original source...
  21. Julou, T., Burghardt, B., Gebauer, G., Berveiller, D., Damesin, C., Selosse, M.A.: Mixotrophy in orchids: insights from a comparative study of green individuals and nonphotosynthetic individuals of Cephalanthera damasonium. - New Phytol. 166: 639-653, 2005. Go to original source...
  22. Koide, R.T., Sharda, J.N., Herr, J.R., Malcom, G.M.: Ectomycorrhizal fungi and the biotrophy-saprotrophy continuum. - New Phytol. 178: 230-233, 2008. Go to original source...
  23. Koske, R.E., Gemma, J.N.: A modified procedure for staining roots to detect VA mycorrhizas. - Mycol. Res. 92: 486-505, 1989. Go to original source...
  24. Leake, J.R.: The biology of myco-heterotrophic (saprophytic) plants. - New Phytol. 127: 171-216, 1994. Go to original source...
  25. Leake, J.R.: Myco-heterotroph/epiparasitic plant interactions with ectomycorrhizal and asrbuscular mycorrhizal fungi. - Curr. Opin. Plant Biol. 7: 422-428, 2004. Go to original source...
  26. Ma, M., Tan, T.K., Wong, S.M.: Identification and molecular phylogeny of Epulorhiza isolates from tropical orchids. - Mycol. Res. 107: 1041-1049, 2003. Go to original source...
  27. Midgley, D.J., Jordan, L.A., Saleeba, J.A., McGee, P.A.: Utilisation of carbon substrates by orchid and ericoid mycorrhizal fungi from Australian dry sclerophyll forests. - Mycorrhiza 16: 175-182, 2006. Go to original source...
  28. Purves, S., Hadley, G.: Movement of carbon compounds between the partners in orchid mycorrhizas. - In: Sanders, F.E., Mosse, B., Tinker, P.B. (ed.): Endomycorrhizas. Pp. 173-194. Academic Press, London 1975.
  29. Rasmussen, H.N. (ed.): Terrestrial Orchids: from Seed to Mycotrophic Plant. - Cambridge University Press, Cambridge 1995.
  30. Rasmussen, H.N., Rasmussen, F.N.: Orchid mycorrhiza: implications of a mycophagous life style. - Oikos 118: 334-345, 2009. Go to original source...
  31. Rasmussen, H.N., Whigham, D.F.: Phenology of roots and mycorrhiza in orchid species differing in phototrophy strategy. - New Phytol. 154: 797-807, 2002. Go to original source...
  32. Selosse, M.-A., Roy, M.: Green plants that feed on fungi: facts and questions about mixotrophy. - Trends Plant Sci. 14: 64-70, 2009. Go to original source...
  33. Shefferson, R.P., Taylor, D.L., Weiss, M., Garnica, S., McCormick, M.K., Adams, S., Gray, H.M., McFarland, J.W., Kull, T., Tali, K., Yukawa, T., Kawahara, T., Miyoshi, K., Lee, Y.I.: The evolutionary history of mycorrhizal specificity among lady's slipper orchids. - Evolution 61: 1380-1390, 2007. Go to original source...
  34. Smith, S.E.: Carbohydrate translocation in orchid mycorrhizas. - New Phytol. 66: 371-378, 1967. Go to original source...
  35. Smith, S.E., Read, D.J. (ed.): Mycorrhizal Symbiosis. 2nd Edition. - Academic Press, London 1997.
  36. Smith, S.E., Read, D.J. (ed.): Mycorrhizal Symbiosis. 3rd Edition. - Academic Press, London 2008.
  37. Štorchová, H., Hrdličková, R., Chrtek, J., Tetera, M., Fitze, D., Fehrer, J.: An improved method of DNA isolation from plants collected in the field and conserved in saturated NaCl/CTAB solution. - Taxon 49: 79-84, 2000. Go to original source...
  38. Williams, P.G.: Orchidaceous rhizoctonias in pot cultures of vesicular-arbuscular mycorrhizal fungi. - Can. J. Bot. 63: 1329-1333, 1984.
  39. Zimmer, K., Hynson, N.A., Gebauer, G., Allen, E.B., Allen, M.F., Read, D.J.: Wide geographical and ecological distribution of nitrogen and carbon gains from fungi in pyroloids and monotropoids (Ericaceae) and in orchids. - New Phytol. 175: 166-175, 2007. Go to original source...