Biologia plantarum 2019, 63:380-387 | DOI: 10.32615/bp.2019.044

Suitable reference genes for real-time quantitative PCR in Salsola laricifilia under five abiotic stresses

Y.-F. Zhang1, Z.-B. Wen1,*, Y. Wang1,2, Y.-L. Wang1,2, Y. Feng1
1 Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, P.R. China
2 University of Chinese Academy of Sciences, Beijing, 100049, China

Salsola laricifolia, a typical C3-C4 intermediate desert plant, is an important for understanding gene evolution and mechanisms for drought resistance. The reverse transcription quantitative polymerase chain reaction (RT-qPCR) is a preferred choice for gene expression studies, but it requires stable reference genes for normalization. Therefore, we tested the expression stability of five candidate reference genes in S. laricifolia: EF1α (elongation factor 1-α), ACT (actin), GAPDH (glyceraldehyde-3-phosphate dehydrogenase), TUB (tubulin), and 18S (18S ribosomal RNA). The expressions were tested in different tissues and under five stresses caused by abscisic acid (ABA), NaCl, NaHCO3, darkness, and osmotic stress (polyethylene glycol 6000, PEG). Four commonly used software programs (geNorm, NormFinder, BestKeeper, and RefFinder) were used. The results show the following most stable reference genes: GAPDH for ABA and dark treatments; EF1a for NaCl, PEG; and all samples; TUB for NaHCO3; and 18S for the controls. The ACT was not ranked first in any group, and was the least stable reference gene under the dark, NaHCO3, and PEG. Moreover, pairwise analysis by the geNorm algorithm shows that two best reference genes were 18S and EF1a for the controls, GAPDH, and 18S for the ABA and dark treatments, EF1a and TUB for the NaCl treatment, TUB and 18S for the NaHCO3 treatment, EF1a and GAPDH for the PEG treatment, and EF1a and 18S for all samples. The reference genes for RT-qPCR in S. laricifolia identified in our study will facilitate future work on targeted gene expression.

Keywords: abscisic acid, C3-C4 intermediate species, NaCl, NaHCO3, polyethylene glycol, RT-qPCR normalization

Accepted: January 9, 2019; Prepublished online: January 9, 2019; Published: January 19, 2019Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Zhang, Y.-F., Wen, Z.-B., Wang, Y., Wang, Y.-L., & Feng, Y. (2019). Suitable reference genes for real-time quantitative PCR in Salsola laricifilia under five abiotic stresses. Biologia plantarum63(1), 380-387. doi: 10.32615/bp.2019.044.
Download citation

Supplementary files

Download fileZHANG5817Suppl.pdf

File size: 952.71 kB

References

  1. Acevedo, R.M., Avico, E.H., Ruiz, O.A., Sansberro, P.A.: Assessment of reference genes for real-time quantitative PCR normalization in Ilex paraguariensis leaves during drought. - Biol. Plant. 62: 89-96, 2018. Go to original source...
  2. Andersen, C.L., Jensen, J.L., Ørntoft, T.F.: Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. - Cancer Res. 64: 5245-5250, 2004. Go to original source...
  3. Bao, W., Qu, Y., Shan, X., Wan, Y.: Screening and validation of housekeeping genes of the root and cotyledon of Cunninghamia lanceolata under abiotic stresses by using quantitative real-time PCR. - Int. J mol. Sci. 17: E1198, 2016. Go to original source...
  4. Brunner, A.M., Yakovlev, I.A., Strauss, S.H.: Validating internal controls for quantitative plant gene expression studies. - BMC Plant Biol. 4: 14, 2004. Go to original source...
  5. Bustin, S.A.: Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. - J. mol. Endocrinol. 25: 169-193, 2000. Go to original source...
  6. Bustin, S.A.: Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. - J. mol. Endocrinol. 29: 23-39, 2002. Go to original source...
  7. Bustin, S.A., Benes, V., Garson, J.A., Hellemans, J., Huggett, J., Kubista, M., Mueller, R., Nolan, T., Pfaffl, M.W., Shipley, G.L., Vandesompele, J., Wittwer, C.T.: The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. - Clin. Chem. 55: 611-622, 2009. Go to original source...
  8. Chang, E., Shi, S.Q., Liu, J.F., Cheng, T.L., Xue, L., Yang, X. Y., Yang, W.J., Lan, Q., Jian, Z.P.: Selection of reference genes for quantitative gene expression studies in Platycladus orientalis (Cupressaceae) using real-time PCR. - PloS ONE 7: e33278, 2012. Go to original source...
  9. Chen, J.C., Huang, Z.F., Huang, H.J., Wei, S.H., Liu, Y., Jiang, C.L., Zhang, J., Zhang, C.X.: Selection of relatively exact reference genes for gene expression studies in goosegrass (Eleusine indica) under herbicide stress. - Sci. Rep. 7: 46494, 2017. Go to original source...
  10. Chen, L., Zhong, H.Y., Kuang, J.F., Li, J.G., Lu, W.J., Chen, J.Y.: Validation of reference genes for RT-qPCR studies of gene expression in banana fruit under different experimental conditions. - Planta 234: 377-390, 2011. Go to original source...
  11. Chen, Y., Hu, B.Y., Tan, Z.Q., Liu, J., Yang, Z.M., Li, Z.H., Huang, B.R.: Selection of reference genes for quantitative real-time PCR normalization in creeping bentgrass involved in four abiotic stresses. - Plant Cell Rep. 34: 1825-1834, 2015.
  12. Czechowski, T., Stitt, M., Altmann, T., Udavardi, M.K., Scheibe, W.R.: Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. - Plant Physiol. 139: 5-17, 2005. Go to original source...
  13. Demidenko, N.V., Logacheva, M.D., Penin, A.A.: Selection and validation of reference genes for quantitative real-time PCR in buckwheat (Fagopyrum esculentum) based on transcriptome sequence data. - PLoS ONE 6: e19434, 2011. Go to original source...
  14. Edwards, G.E., Ku, M.S.B.: Biochemistry of C3-C4 intermediates. - In Hatch, M.D, Boardman, N.K. (ed.): The Biochemistry of Plants. Vol 10. Pp. 275-325. Academic Press, New York 1987. Go to original source...
  15. Expósito-Rodríguez, M., Borges, A.A., Borges-Pérez, A., Pérez, J.A.: Selection of internal control genes for quantitative real-time RT-PCR studies during tomato development process. - BMC Plant Biol. 8: 131, 2008. Go to original source...
  16. Feng, L.Y., Yu, Q., Li, X., Ning, X.H, Wang, J., Zou, J.J., Zhang, L.L., Wang, S., Hu, J.J., Xu, X.L., Bao, Z.M.: Identification of reference genes for qRT-PCR analysis in yesso scallop Patinopecten yessoensis. - PLoS ONE 8: e75609, 2013. Go to original source...
  17. Guénin, S., Mauriat, M., Pelloux, J., Van Wuytswinkel, O., Bellini, C., Gutierrez, L.: Normalization of qRT-PCR data: the necessity of adopting a systematic, experimental conditions-specific, validation of reference. - J. exp. Bot. 60: 487-493, 2009. Go to original source...
  18. Hong, S.M., Bahn, S.C., Lyu, A., Jung, H.S., Ahn, J.H.: Identification and testing of superior reference genes for a starting pool of transcript normalization in Arabidopsis. - Plant Cell Physiol. 51: 1694-1706, 2010. Go to original source...
  19. Hong, S.Y., Seo, P.J., Yang, M.S., Xiang, F., Park, C.M.: Exploring valid reference genes for gene expression studies in Brachypodium distachyon by real-time PCR. - BMC Plant Biol. 8: 112, 2008. Go to original source...
  20. Huggett, J., Dheda, K., Bustin, S., Zumla, A.: Real-time RT-PCR normalization; strategies and considerations. - Genes Immun. 6: 279-284, 2005. Go to original source...
  21. Jian, B., Liu, B., Bi, Y.R., Hou, W.S., Wu, C.X., Han, T.F.: Validation of internal control for gene expression study in soybean by quantitative real-time PCR. - BMC mol. Biol. 9: 59, 2008. Go to original source...
  22. Kim, B.R., Nam, H.Y., Kim, S.U., Kim, S.I., Chang, Y.J.: Normalization of reverser transcription quantitative-PCR with housekeeping genes in rice. - Biotechnol. Lett. 25: 1869-1872, 2003.
  23. Klie, M., Debener, T.: Identification of superior reference genes for data normalization of expression studies via quantitative PCR in hybrid roses (Rosa hybrida). - BMC res. Notes 4: 518, 2011. Go to original source...
  24. Li, R.M., Xie, W., Wang, S.L., Wu, Q.J., Yang, N., Pan, H.P., Zhou, X.M., Bai, L. Y., Xu, B.Y., Zhou, X.G., Zhang, Y.J.: Reference gene selection for qRT-PCR analysis in the sweet potato whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae). - PLoS ONE 8: e53006, 2013. Go to original source...
  25. Li, X.S., Yang, H.L., Zhang, D.Y., Zhang, Y.M., Wood, A.J.: Reference gene selection in the desert plant Eremosparton songoricum. - Int. J. mol. Sci. 13: 6944-6963, 2012. Go to original source...
  26. Li, X.S., Zhang, D.Y., Li, H.Y., Gao, P., Yang, H.L., Zhang, Y.M., Wood, A.J.: Characteriazation of reference genes for RT-qPCR in the desert moss Syntrichia caninervis in response to abiotic stress and desiccation/rehydration. - Front. Plant Sci. 6: 38, 2015.
  27. Libault, M., Thibivilliers, S., Bilgin, D.D., Radwan, O., Benitez, M., Clough, S.J.., Stacey, G.: Identification of four soybean reference genes for gene expression normalization. - Plant Genome 1: 44-54, 2008. Go to original source...
  28. Liu, Y., Liu, J., Xu, L., Lai, H., Chen, Y., Yang, Z.M., Huang, B.R.: Identification and validation of reference genes for seashore Paspalum response to abiotic stresses. - Int. J. mol. Sci. 18: E1322, 2017. Go to original source...
  29. Livak, K.J., Schmittgen, T.D.: Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. - Methods 25: 402-408, 2001. Go to original source...
  30. Ma, S.H., Niu, H.W., Liu, C.J., Zhang, J., Hou, C.Y., Wang, D.M.: Expression stabilities of candidate reference genes for RT-qPCR under different stress conditions in soybean. - PLoS ONE 8: e75271, 2013. Go to original source...
  31. Mallona, I., Lischewski, S., Weiss, J., Hause, B., Egea-Cortines, M.: Validation of reference genes for quantitative real-time PCR during leaf and flower development in Petunia hybrida. - BMC Plant Biol. 10: 4, 2010. Go to original source...
  32. Oakley, R.V., Wang, Y.S., Ramakrishna, W., Harding, S.A., Tsai, C.J.: Differential expansion and expression of alpha- and beta-tubulin gene families in Populus. - Plant Physiol. 145: 961-973, 2007. Go to original source...
  33. Paolacci, A.R., Tanzarella, O.A., Porceddu, E., Ciaffi, M.: Identification and validation of reference genes for quantitative RT-PCR normalization in wheat. - BMC mol. Biol. 10: 11, 2009. Go to original source...
  34. Perini, P., Pasquali, G., Margis-Pinheiro, M., de Oliviera, P.R.D., Revers, L.F.: Reference genes for transcriptional analysis of flowering and fruit ripening stages in apple (Malus × domestica Borkh.). - Mol. Breed. 34: 829-842, 2014. Go to original source...
  35. Petriccione, M., Mastrobuoni, F., Zampella, L., Scortichini, M.: Reference gene selection for normalization of RT-qPCR gene expression data from Actinidia deliciosa leaves infected with Pseudomonas syringae pv. actinidiae. - Sci. Rep. 5: 16961, 2015. Go to original source...
  36. Pfaffl, M.W., Tichopad, A., Prgomet, C., Neuvians, T.P.: Determination of stable houskeeping genes, differentially regulated target genes and sample integrity: BestKeeper-Excel-based tool using pair-wise correlations. - Biotechnol. Lett. 26: 509-515, 2004. Go to original source...
  37. Sang, J., Han, X.J., Liu, M.Y., Qiao, G.R., Jiang, J., Zhou, R.Y.: Selection and validation of reference genes for real-time quantitative PCR in hyperaccumulating ecotype of Sedum alfredii under differernt heavy metals stresses. - PLoS ONE 8: e82927, 2013. Go to original source...
  38. Sang, J., Wang, Z.N., Li, M., Cao, J.B., Niu, G.Y., Xia, L., Zou, D., Wang, F., Xu, X.J., Han, X.J., Fan, J.Q., Yang, Y., Zuo, W.Z., Zhang, Y., Zhao, W.M., Bao, Y.N., Xiao, J.F., Hu, S.N., Hao, L.L., Zhang, Z.: ICG: a wiki-driven knowledgebase of internal control genes for RT-qPCR normalization. - Nucl. Acids Res. 46: D121-D126, 2017a.
  39. Sang, X.H., Gu, W., Chao, J.G., Liu, Q.Z., Jiang, L., Han, Y., Zhou, Y.Z.: Selection of reference genes of Atractylodes lancea and its application in biosynthesis of active ingredients. - Plant Physiol. J. 53: 1680-1686, 2017b.
  40. Udvardi, M.K., Czechowski, T., Scheible, W.R.: Eleven golden rules of quantitative RT-qPCR. - Plant Cell 20: 1736-1737, 2008. Go to original source...
  41. Ueno, O.: Structural and biochemical characterization of the C3-C4 intermediate Brassica gravinae and relatives, with particular reference to cellular distribution of Rubisco. - J. exp. Bot. 62: 5347-5355, 2011. Go to original source...
  42. Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A., Speleman, F.: Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. - Genome Biol. 3: research0034.1-research0034.11, 2002. Go to original source...
  43. Wang, M., Wang, Q.L., Zhang, B.H.: Evaluation and selection of reliable reference genes for gene expression under abiotic stress in cotton (Gossypium hirsutum L.). - Gene 530: 44-50, 2013. Go to original source...
  44. Wen, Z.B., Zhang, M.L.: Reference gene selection for real-time quantitative PCR in Salsola laricifolia under soil drought stress. - Plant Physiol. J 51: 2031-2038, 2015a.
  45. Wen, Z.B., Zhang, M.L.: Salsola laricifolia, another C3-C4 intermediate species in tribe Salsoleaes (Chenopodiaceae). - Photosynth. Res. 123: 33-43, 2015b. Go to original source...
  46. Wen, Z.B., Zhang, M.L., Meng, H.H.: Salsola arbusculiformis and S. laricifolia (Chenopodiaceae) in China. - Nord. J Bot. 32: 167-175, 2014. Go to original source...
  47. Xiao, X.L., Ma, J.B., Wang, J.R., Wu, X.M., Li, P.B., Yao, Y.A.: Validation of suitable reference genes for gene expression analysis in the halophyte Salicornia europaea by real-time quantitative PCR. - Front. Plant Sci. 5: 788, 2015. Go to original source...
  48. Xie, F.L., Xiao, P., Chen, D.L., Xu, L., Zhang, B.H.: miRDeepFinder: a miRNA analysis tool for deep sequencing of plant small RNAs. - Plant mol. Biol. 80: 75-84, 2012. Go to original source...
  49. Xu, M., Zhang, B., Su, X.H., Zhang, S.G., Huang, M.R.: Reference gene selection for quantitative real-time polymerase chain reaction in Populus. - Anal. Biochem. 408: 337-339, 2011. Go to original source...
  50. Yang, Q., Yin, J.J., Li, G., Qi, L.W., Yang, F.Y., Wang, R.G., Li G.J.: Reference gene selection for qRT-PCR in Caragana korshinskii Kom. under different stress conditions. - Mol. Biol. Rep. 41: 2325-2334, 2014. Go to original source...
  51. Zhang, Q.L., Zhu, Q.H., Liao, X., Wang, X.Q., Chen, T., Xu, H.T., Wang, J., Yuan, M.L., Chen, J.Y.: Selection of reliable reference genes for normalization of quantitative RT-qPCR from different developmental stages and tissues in amphioxus. - Sci. Rep. 6: 37549, 2017.
  52. Zhao, X.T., Zhang, X.L., Guo, X., B., Li, S.J., Han, L.L., Song, Z.H., Wang, Y.N., Li, J.H., Li, M.J.: Identification and validation of reference genes for qRT-PCR studies of gene expression in Dioscorea opposita. - BioMed Res. Int. 2016: 3089584, 2016.