Biologia plantarum 2018, 62:721-731 | DOI: 10.1007/s10535-018-0811-6

Mapping QTLs for chlorophyll content and chlorophyll fluorescence in wheat under heat stress

N. Bhusal1, P. Sharma2, S. Sareen2,*, A. K. Sarial3,4
1 Department of Genetics and Plant Breeding, CCS Haryana Agricultural University, Hisar, Haryana, India
2 ICAR-Indian Institute of Wheat and Barley Research, Aggarsain Marg, Karnal, Haryana, India
3 Department of Genetics and Plant Breeding, CCS Haryana Agricultural University, Kaithal, Haryana, India
4 CSK Himachal Pradesh Krishi Vishva Vidyalaya, Palampur, Himachal Pradesh, India

Heat stress, one of the major abiotic stresses in wheat, affects chlorophyll fluorescence and chlorophyll content and thereby photosynthesis. To identify quantitative trait loci (QTLs) associated with these traits under terminal heat stress, 251 recombinant inbred lines (RILs) derived from a cross HD 2808/HUW510 were phenotyped. Using composite interval mapping, 40 QTLs were identified; 17 were related to conditions after timely sowing and 23 to heat stress after late sowing. The various parameters of chlorophyll fluorescence were associated with 23 QTLs, which were located on chromosomes 1A, 2A, 3A, and 2D and explained 3.67 to 18.04 % of phenotypic variation, whereas chlorophyll content was associated with 17 QTLs on chromosomes 2A, 2B, 2D, 5B, and 7A explaining 3.49 to 31.36 % of phenotypic variation. Most of the identified QTLs were clustered on chromosome 2D followed by 2A and 1A. The QTL Qchc.iiwbr-2A for chlorophyll content linked with marker gwm372 was stable over conditions and explained 3.81 to 18.05 % of phenotypic variation. In addition, 7 epistatic QTL pairs were also detected which explained 1.67 to 11.0 % of phenotypic variance. These identified genomic regions can be used in marker assisted breeding after validation for heat tolerance in wheat.

Keywords: composite interval mapping; phenotypic variation; RILs; timely and late sowing; Triticum aestivum
Subjects: QTL mapping; chlorophyll; chlorophyll fluorescence; RILs; linkage mapping; timely and late sowing; wheat
Species: Triticum aestivum

Received: September 27, 2017; Revised: March 23, 2018; Accepted: March 27, 2018; Published: August 1, 2018Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Bhusal, N., Sharma, P., Sareen, S., & Sarial, A.K. (2018). Mapping QTLs for chlorophyll content and chlorophyll fluorescence in wheat under heat stress. Biologia plantarum62(4), 721-731. doi: 10.1007/s10535-018-0811-6.
Download citation

Supplementary files

Download filebpl-201804-0012_S1.pdf

File size: 733.48 kB

References

  1. Ali, M.B., Ibrahim, A.M.H., Malla, S., Rudd, J., Hays, D.B.: Family-based QTL mapping of heat stress tolerance in primitive tetraploid wheat (Triticum turgidum L.). - Euphytica 189: 189-203, 2013. Go to original source...
  2. Al-Khatib, K., Paulsen, G.M.: Enhancement of thermal injury to photosynthesis in wheat plants and thylakoids by high light intensity. - Plant Physiol. 1041: 1041-1048, 1989. Go to original source...
  3. Al-Khatib, K., Paulsen, G.M.: Mode of high-temperature injury to wheat during grain development. - Physiol. Plant. 363: 363-368, 1984. Go to original source...
  4. Araus, J.L., Slafer, G.A., Royo, C., Serret, M.D.: Breeding for yield potential and stress adaptation in cereals. - Crit. Rev. Plant Sci. 1: 1-36, 2008. Go to original source...
  5. Ashraf, M.: Some important physiological selection criteria for salt tolerance in plants. - Flora 361: 361-376, 2004. Go to original source...
  6. Azam, F., Chang, X., Jing, R.: Mapping QTL for chlorophyll fluorescence kinetics parameters at seedling stage as indicators of heat tolerance in wheat. - Euphytica 245: 245-258, 2015. Go to original source...
  7. Baker, N.R.: Chlorophyll fluorescence: a probe of photosynthesis in vivo. - Annu. Rev. Plant Biol. 89: 89-113, 2008. Go to original source...
  8. Blum, A., Ebercon, A.: Cell membrane stability as a measure of drought and heat tolerance in wheat. - Crop Sci. 43: 43-47, 1981. Go to original source...
  9. Blum, A.: The effect of heat stress on wheat leaf and ear photosynthesis. - J. exp. Bot. 111: 111-118, 1986. Go to original source...
  10. Calderini, D.F., Reynolds, M.P., Slafer, G.A.: Source-sink effects on grain weight of bread wheat, durum wheat and triticale at different locations. - Aust. J. agr. Res. 227: 227-233, 2006. Go to original source...
  11. Camejo, D., Pedro, R., Angeles, M.: High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility. - J. Plant Physiol. 281: 281-289, 2005. Go to original source...
  12. Cossani, C.M., Reynolds, M.P.: Physiological traits for improving heat tolerance in wheat. - Plant Physiol. 1710: 1710-1718, 2012. Go to original source...
  13. Farooq, M., Bramley, H., Palt, J.A., Siddique, K.H.M.: Heat stress in wheat during reproductive and grain-filling phases. - Crit. Rev. Plant Sci. 30:1-17, 2011. Go to original source...
  14. Field C., Barros V., Stockeret T. (ed.): Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. - Cambridge University Press, New York 2012.
  15. Garg, B., Jaiswal, J.P., Misra, S., Tripathi, B.N., Prasad, M.A.: A comprehensive study on dehydration-induced antioxidative responses during germination of Indian bread wheat (Triticum aestivum L. em Thell) cultivars collected from different agro-climatic zones. - Physiol. mol. Biol. Plants 217: 217-228, 2012. Go to original source...
  16. Harding, S.A., Guikema, J.A., Paulsen, G.M.: Photosynthetic decline from high temperature stress during maturation of wheat: I. Interaction with senescence processes. - Plant Physiol. 648: 648-653, 1990. Go to original source...
  17. Herzog, H., Chai-Arree, W.: Gas exchange of five warm-season grain legumes and their susceptibility to heat stress. - J Agron. Crop Sci. 466: 466-474, 2012. Go to original source...
  18. Kumar, S., Sehgal, S.K., Kumar, U., Prasad, P.V.V., Joshi, A.K., Gill, B.S.: Genomic characterization of drought related traits in spring wheat. - Euphytica 265: 265-276, 2012. Go to original source...
  19. Landjeva, S., Lohwasser, U., Börner, A.: Genetic mapping within the wheat D genome reveals QTL for germination, seed vigour and longevity, and early seedling growth. - Euphytica 129: 129-143, 2010. Go to original source...
  20. Li, H., Lin, F., Wang, G., Jing, R., Zheng, Q., Li, B., Li, Z.: Quantitative trait loci mapping of dark-induced senescence in winter wheat (Triticum aestivum). - J. integr. Plant Biol. 33: 33-44, 2012. Go to original source...
  21. Lobell, D.B., Burke, M.B., Tebaldi, C., Mastrandrea, M.D., Falcon, W.P., Naylor, R.L.: Prioritizing climate change adaptation needs for food security in 2030. - Science 607: 607-610, 2008. Go to original source...
  22. Lopes, M.S., Reynolds, M.P.: Stay-green in spring wheat can be determined by spectral reflectance measurements (normalized difference vegetation index) independently from phenology. - J. exp. Bot. 3789: 3789-3798, 2012. Go to original source...
  23. Maxwell, K., Johnson, G.N.: Chlorophyll fluorescence: a practical guide. - J. exp. Bot. 659: 659-668, 2000. Go to original source...
  24. Mysza, C. I., Tyrka, M., Marcinska, I., Skrzypek, E., Karbarz, M., Dziurka, M., Hura, T., Dziurka, K., Quarrie, S.A.: Quantitative trait loci for leaf chlorophyll fluorescence parameters, chlorophyll and carotenoid contents in relation to biomass and yield in bread wheat and their chromosome deletion bin assignments. - Mol. Breed. 189: 189-210, 2013. Go to original source...
  25. Paknejad, F., Nasrim, M., Moghadam, H.R.T., Zahedi, H., Alahmadi, M.J.: Effects of drought stress on chlorophyll fluorescence parameters, chlorophyll content and grain yield of wheat cultivars. - J. biol. Sci. 841: 841-847, 2007.
  26. Paliwal, R., Roder, M.S., Kumar, U., Srivastava, J.P., Joshi, A.K.: QTL mapping of terminal heat tolerance in hexaploid wheat (Triticum aestivum L.). - Theor. appl. Genet. 561: 561-575, 2012. Go to original source...
  27. Percival, G.C.: The use of chlorophyll fluorescence to identify chemical and environmental stress in leaf tissue of three oak (Quercus) species. - J. Arboricult. 215: 215-227, 2005.
  28. Pinto, R.S., Reynolds, M.P., Mathews, K.L., McIntyre, C.L., Olivares-Villegas, J.J., Chapman, S.C.: Heat and drought adaptive QTL in a wheat population designed to minimize confounding agronomic effects. - Theor. appl. Genet. 1001: 1001-1021, 2010. Go to original source...
  29. Pour-Aboughadareh, A., Ahmadi, J., Mehrabi, A.A., Etminan, A., Moghaddam, M., Siddique, K.H.: Physiological responses to drought stress in wild relatives of wheat: implications for wheat improvement. - Acta Physiol. Plant. 106: 106, 2017. Go to original source...
  30. Prasad, B., Carver, B.F., Stone, M.L., Babar, M.A., Rain, W.R., Klatt, A.R.: Genetic analysis of indirect selection for winter wheat grain yield using spectral reflectance indices. - Crop Sci. 1416: 1416-1425, 2007. Go to original source...
  31. Rachmilevitch, S., DaCosta, M., Huang, B.: Physiological and biochemical indicators for stress tolerance. Plant Environment Interactions. - CRC Taylor and Francis, New York 2006.
  32. Reynolds, M.P., Balota, M., Delgado, M.I.B., Amani, I., Fischer, R.A.: Physiological and morphological traits associated with spring wheat yield under hot, irrigated conditions. - Funct. Plant Biol. 717: 717-730, 1994. Go to original source...
  33. Ristic, Z., Bukovnik, U., Prasad, P.V.V.: Correlation between heat stability of thylakoid membranes and loss of chlorophyll in winter wheat under heat stress. - Crop Sci. 2067: 2067-2073, 2007. Go to original source...
  34. Rizza, F., Pagani, D., Gut, M., Prasil, I.T., Lago, C., Tondelli, A., Orru, L., Mazzucotelli, E., Francia, E., Badeck, F.W., Crosatti, C., Terzi, V., Cattivelli, L., Stanca, A.M.: Diversity in the response to low temperature in representative barley genotypes cultivated in Europe. - Crop Sci. 2759: 2759-2779, 2011. Go to original source...
  35. Saghai-Maroof, M.A., Soliman, K.M., Jorgensen, R., Allard, R.W.: Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location and population dynamics. - Proc. nat. Acad. Sci. USA 8014: 8014-8018, 1984. Go to original source...
  36. Salekdeh, G.H., Siopongco, J., Wade, L.J., Ghareyazie, B., Bennett, J.: Proteomics analysis of rice leaves during drought stress and recovery. - Proteomics 1131: 1131-1145, 2002. Go to original source...
  37. Sangeeta, A., Malhotra, P.K., Bhatia, P.K., Prasad, R.: Statistical package for agricultural research (SPAR 2.0). - J. indian Soc. agr. Statistics 65: 65-74, 2008.
  38. Sareen, S., Munjal, R., Singh, N.B., Singh, B.N., Verma, R.S., Meena, B.K., Shoran, J., Sarial, A.K., Singh, S.S.: Genotype × environment interaction and ammi?? analysis for heat tolerance in wheat. - Cereal Res Commun. 267: 267-276, 2012. Go to original source...
  39. Sayed, O.H.: Chlorophyll fluorescence as a tool in cereal crop research. - Photosynthetica 321: 321-330, 2003. Go to original source...
  40. Shanmugam, S., Kjaer, K.H., Ottosen, C.O., Rosenqvist, E., Sharma, D.K., Wollenweber, B.: The alleviating effect of elevated CO2 on heat stress susceptibility of two wheat (Triticum aestivum L.) cultivars. - J. Agron. Crop Sci. 340: 340-50, 2013. Go to original source...
  41. Shirdelmoghanloo, H., Taylor, J.D., Lohraseb, I., Rabie, H., Brien, C., Timmins, A., Martin, P., Mather, D.E., Emebiri, L., Collins, N.C.: A QTL on the short arm of wheat (Triticum aestivum L.) chromosome 3B affects the stability of grain weight in plants exposed to a brief heat shock early in grain filling. - BMC Plant Biol. 100: 100, 2016. Go to original source...
  42. Somers, D.J., Isaac, P., Edwards, K.: A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). - Theor. appl. Genet. 1105: 1105-1114, 2004. Go to original source...
  43. Talukder, S., Babar, M., Vijayalakshmi, K., Poland, J., Prasad, P., Bowden, R., Fritz, A.: Mapping QTL for the traits associated with heat tolerance in wheat (Triticum aestivum L.). - BMC Genet. 97: 97, 2014. Go to original source...
  44. Vijayalakshmi K., Fritz A.K., Paulsen G.M., Bai G., Pandravada S., Gill B.S.: Modeling and mapping QTL for senescence-related traits in winter wheat under high temperature. - Mol. Breed. 163: 163-175, 2010. Go to original source...
  45. Wang, S., Basten, C.J., Zeng, Z.B.: Windows QTL Cartographer 2.5. - Department of Statistics, North Carolina State University, Raleigh 2007.
  46. Wiegand, C.L., Cuellar, J.A.: Duration of grains filling and kernel weight as affected by temperature. - Crop Sci. 95: 95-101, 1981. Go to original source...
  47. Yang, D.L., Jing, R.L., Chang, X.P., Li W.: Quantitative trait loci mapping for chlorophyll fluorescence and associated traits in wheat (Triticum aestivum). - J. integr. Plant Biol. 646: 646-654, 2007. Go to original source...
  48. Yang, J., Hu, C., Hu, H., Yu, R., Xia, Z., Ye, X., Zhu, J.: QTL-network: mapping and visualizing genetic architecture of complex traits in experimental populations. - Bioinformatics 721: 721-723, 2008. Go to original source...
  49. Yang, J., Sears, R.G., Gill, B.S., Paulsen, G.M.: Quantitative and molecular characterization of heat tolerance in hexaploid wheat. - Euphytica 275: 275-282, 2002. Go to original source...