Biologia plantarum 55:453-460, 2011 | DOI: 10.1007/s10535-011-0110-y

Engineering tocopherol biosynthetic pathway in lettuce

Y. Li1,2, G. Wang3, R. Hou1, Y. Zhou1, R. Gong3, X. Sun1,*, K. Tang1,3,*
1 State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, Fudan University, Shanghai, P.R. China
2 Shanghai Information Center for Life Sciences, Chinese Academy of Sciences, Shanghai, P.R. China
3 Plant Biotechnology Research Center, School of Agriculture and Biology, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, Shanghai Jiao Tong University, Shanghai, P.R. China

In order to increase tocopherol content, genes encoding Arabidopsis homogentisate phytyltransferase (HPT) and γ-tocopherol methyltransferase (γ-TMT) were constitutively over-expressed in lettuce (Lactuca sativa L. var. logifolia), alone or in combination. Over-expression of hpt could increase total tocopherol content, while over-expression of γ-tmt could shift tocopherol composition in favor of α-tocopherol. Transgenic lettuce lines expressing both hpt and γ-tmt produced significantly higher amount of tocopherol and elevated α-/γ-tocopherol ratio compared with non-transgenic control and transgenic lines harboring a single gene (hpt or γ-tmt). The best line produced eight times more tocopherol than the non-transgenic control and more than twice than hpt single-gene transgenic line.

Keywords: homogentisate phytyltransferase; Lactuca sativa; γ-tocopherol methyltransferase; transformation; vitamin E.

Received: December 21, 2009; Accepted: May 11, 2010; Published: September 1, 2011Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Li, Y., Wang, G., Hou, R., Zhou, Y., Gong, R., Sun, X., & Tang, K. (2011). Engineering tocopherol biosynthetic pathway in lettuce. Biologia plantarum55(3), 453-460. doi: 10.1007/s10535-011-0110-y.
Download citation

References

  1. Argyris, J., Dahal, P., Hayashi, E., Still, D.W., Bradford, K.J.: Genetic variation for lettuce seed thermoinhibition is associated with temperature-sensitive expression of abscisic acid, gibberellin, and ethylene biosynthesis, metabolism, and response genes. - Plant. Physiol. 148: 926-947, 2008. Go to original source...
  2. Ausubel, F.M., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A., Struhl, K. (ed.): Short Protocols in Molecular Biology. - John Wiley&Son, New York 1995.
  3. Cho, E.A., Lee, C.A., Kim, Y.S., Baek, S.H., Reyes, B.G., Yun, S.J.: Expression of γ-tocopherol methyltransferase transgene improves tocopherol composition in lettuce (Lactuca sativa L.). - Mol. Cells 19: 16-22, 2005.
  4. Collakova, E., DellaPenna, D.: Isolation and functional analysis of homogentisate phytyltransferase from Synechocystis sp. PCC 6803 and Arabidopsis. - Plant. Physiol. 127: 1113-1124, 2001. Go to original source...
  5. DellaPenna, D.: Progress in the dissection and manipulation of vitamin E synthesis. - Trends Plant. Sci. 10: 574-579, 2005. Go to original source...
  6. DellaPenna, D., Pogson, B.J.: Vitamin synthesis in plants: tocopherols and carotenoids. - Annu. Rev. Plant. Biol. 57: 711-738, 2006. Go to original source...
  7. Eitenmiller, R.R.: Vitamin E content of fats and oils - nutritional implications. - Food. Technol. 51: 78-81, 1997. Go to original source...
  8. Guo, J., Li, X.F., Qi, D.M., Chen, S.Y., Li, Z.Q., Nijs, I., Li, Y.G., Liu, G.S.: Effects of ozone on wild type and transgenic tobacco. - Biol. Plant. 53: 670-676, 2009. Go to original source...
  9. Lee, K., Lee, S.M., Park, S.-R., Jung, J., Moon, J.-K., Cheong, J.-J., Kim, M.: Overexpression of Arabidopsis homogenisate phytyltransferase or tocopherol cyclase elevates vitamin E content by increasing γ-tocopherol level in lettuce (Lactuca sativa L.). - Mol. Cell 24: 301-306, 2007.
  10. Li, Y., Wang, Z., Sun, X., Tang, K.: Current opinions on the functions of tocopherol based on the genetic manipulation of tocopherol biosynthesis in plants. - J. Integr. Plant. Biol. 50: 1057-1069, 2008. Go to original source...
  11. Li, Y., Zhou, Y., Wang, Z., Sun, X., Tang, K.: Engineering tocopherol biosynthetic pathway in Arabidopsis leaves and its effect on antioxidant metabolism. - Plant. Sci. 178: 312-320, 2010. Go to original source...
  12. Norris, S.R., Barette, T.R., DellaPenna, D.: Genetic dissection of carotenoid synthesis in Arabidopsis defines plastoquinone as an essential component of phytone desaturation. - Plant. Cell 7: 2139-2149, 1995. Go to original source...
  13. Porfirova, S., Bergmüller, E., Tropf, S., Lemke, R., Dörmann, P.: Isolation of an Arbidopsis mutant lacking vitamin E and identification of a cyclase essential for tocopherol biosynthesis. - Proc. nat. Acad. Sci. USA 99: 12495-12500, 2002. Go to original source...
  14. Rohmer, M.: Mevalonate-independent methylerythritol phosphate pathway for isoprenoid biosynthesis. Elucidation and distribution. - Pure appl. Chem. 75: 375-387, 2003. Go to original source...
  15. Seong, E.S., Ghimire, B.K., Goh, E.J., Lim, J.D., Kim, M.J., Chung, I.M., Yu, C.Y.: Overexpression of the γ-TMT gene in Codonopsis lanceolata. - Biol. Plant. 53: 631-636, 2009. Go to original source...
  16. Shintani, D., DellaPenna, D.: Elevating the vitamin E content of plants through metabolic engineering. - Science 282: 2098-2100, 1998. Go to original source...
  17. Shintani, D.K., Cheng, Z., DellaPenna, D.: The role of 2-methyl-6-phytylbenzoquinone methyltransferase in determining tocopherol composition in Synechocystis sp. PCC 6803. - FEBS. Lett. 511: 1-5, 2002. Go to original source...
  18. Wroblewski, T., Tomczak, A., Michelmore, R.: Optimization of Agrobacterium-mediated transient assays of gene expression in lettuce, tomato and Arabidopsis. - Plant. Biotechnol. J. 3: 259-273, 2005. Go to original source...
  19. Yang, H.Q., Wu, Y.J., Tang, R.H., Liu, D., Liu, Y., Cashmore, A.R.: The C termini of Arabidopsis cryptochromes mediate a constitutive light response. - Cell 103: 815-827, 2000. Go to original source...