Biologia plantarum 55:469-478, 2011 | DOI: 10.1007/s10535-011-0112-9

Microsporogenesis and pollen formation in cassava

C. Wang1, Z. Lentini2, E. Tabares3, M. Quintero3, H. Ceballos3,4,*, B. Dedicova3, C. Sautter5, C. Olaya3, P. Zhang6
1 South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
2 Universidad ICESI, Cali, Colombia
3 International Center for Tropical Agriculture, Cali, Colombia
4 Universidad Nacional de Colombia, Valle del Cauca, Colombia
5 Institute of Plant Sciences, Swiss Federal Institute of Technology, Zurich, Switzerland
6 Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China

This article describes the complete microsporogenesis and pollen formation in cassava (Manihot esculenta Crantz) at the various developmental stages (pollen mother cell, meiosis, tetrads, early free spore, mid uninucleate, late uninucleate, binucleate and mature pollen grain). Light microscopy, transmission electron microscopy and confocal laser scanning microscopy were used for the study. Floral bud size and other inflorescence characteristics were correlated with specific stages of the microspore development. This association allows a rapid selection of floral buds with similar microspore developmental stages, useful when a large number of homogeneous cells are needed for analysis and for in vitro induction of androgenesis. This article also compares methods for digestion the exine wall in microspores.

Keywords: CLSM; FISH; exine digestion; Manihot esculenta; ultrastructure

Received: December 10, 2009; Accepted: March 17, 2010; Published: September 1, 2011Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Wang, C., Lentini, Z., Tabares, E., Quintero, M., Ceballos, H., Dedicova, B., ... Zhang, P. (2011). Microsporogenesis and pollen formation in cassava. Biologia plantarum55(3), 469-478. doi: 10.1007/s10535-011-0112-9.
Download citation

References

  1. Alves, C.A.A.: Cassava botany and physiology. - In: Hillocks, R.J., Tresh J.M., Bellotti A.C. (ed.): Cassava: Biology, Production and Utilization. Pp. 67-89. CABI Publishing, London 2002.
  2. Barinova, J., Zhexembekova, M., Barsova, E., Lukyanov, S., Heberle-Bors, E., Touraev, A.: Anthirinum majus mircospore maturation and transient transformation in vitro. - J. exp. Bot. 53: 1119-1129, 2002. Go to original source...
  3. Berry, P.E., Cordeiro, I., Wiedenhoeft, A.C., Vitorino-Cruz, M.A., Ribes de Lima, L.: Brasiliocroton, a new crotonoid genus of Euhphorbiacea from Eastern Brazil. - Syst. Bot. 30: 357-365, 2005. Go to original source...
  4. Blackmore, S., Wortley, A.H., Skvarla, J.J., Rowley, J.R.: Pollen wall development in flowering plants. - New Phytol. 174:483-498, 2007. Go to original source...
  5. Boavida, L.C., Becker J.D., Feijó J.A.: The making of gametes in higher plants. - Int. J. dev. Biol. 49: 595-614, 2005. Go to original source...
  6. Ceballos, H., Fregene, M., Pérez, J.C., Morante, N, Calle, F.: Cassava genetic improvement. - In: Kang, M.S., Priyadarshan P.M. (ed.) Breeding Major Food Staples. Pp. 365-391, Blackwell Publishing, Ames 2007.
  7. Ceballos, H., Iglesias, C.A., Pérez J.C., Dixon A.G.O.: Cassava breeding: opportunities. - Plant mol. Biol. 56: 503-515, 2004. Go to original source...
  8. Chen, C.B., Xu, Y.Y., Ma, H., Chong, K.: Cell biological characterization of male meiosis and pollen development in rice. - J. Integr. Plant Biol. 47: 734-744, 2005. Go to original source...
  9. Custódio, L., Carneiro, M.F., Romano, A.: Microsporogenesis and anther culture in carob tree (Ceratonia siliqua L.). - Sci. Hort.104: 65-77, 2005. Go to original source...
  10. Da Silva, R.M., Bandel, G., Faraldo, M.I.F., Martins, P.S.: Biología reprodutiva de etnovariedades de mandioca. - Sci. Agr. 58: 101-107, 2001. [In Span.] Go to original source...
  11. De Carvalho, R.D., Guerra, M.: Cytogenetics of Manihot esculenta Crantz (cassava) and eight related species. - Hereditas 136: 159-168, 2002. Go to original source...
  12. De Souza, M.M., Pereira, T.N.S.: Development of pollen grain in yellow passion-fruit (Passiflora edulis f. flavicarpa; Passifloraceae). - Genet. mol. Biol. 23: 469-473, 2000. Go to original source...
  13. Esau, K.: Anatomy of Seed Plants. - Wiley, New York 1977.
  14. Fan, Z., Armstrong, K.C., Keller, W.A.: Development of microspores in vivo and in vitro in Brassica napus L. - Protoplasma 147: 191-199, 1988. Go to original source...
  15. Goldberg, R.B., Beals, T.P., Sanders, P.M.: Anther development: basic principles and practical applications. - Plant Cell 5:1217-1229, 1993. Go to original source...
  16. Halsey, M.E., Olsen, K.M., Taylor, N.J., Chavarriaga-Aguirre, P.: Reproductive biology of cassava (Manihot escultenta Crantz) and isolation of experimental field trials. - Crop Sci. 48: 49-58, 2008. Go to original source...
  17. Heslop-Harrison, J.: Cytoplasm connections between angiosperm meiocytes. - Ann. Bot. 30: 221-230, 1966. Go to original source...
  18. Hrabina, M., Jain, K., Gouyon, B.: Cross-reactivity between pollen allergens from common Pooideae grasses and cultivated cereals. - Clin. exp. Allergy Rev. 8: 18-20, 2008. Go to original source...
  19. Huang, B., Bird, S., Kemble, R., Simmonds, D., Keller, W., Miki, B.: Effects of culture density, conditioned medium and feeder cultures on microspore embryogenesis in Brassica napus L. cv. Topas. - Plant Cell Rep. 8: 594-597, 1990. Go to original source...
  20. Jennings, D.L.: Variation in pollen and ovule fertility in varieties of cassava, and the effect of interspecific crossing on fertility. - Euphytica 12: 69-76, 1963.
  21. Kasperbauer, M.J., Wilson, H.M: Haploid plant production and use. - USDA Technol. Bull. 1586: 33-39, 1979.
  22. Kernan, Z., Ferrie, A.M.R.: Microspore embryogenesis and the development of a double haploidy protocol for cow cockle (Saponaria vaccaria). - Plant Cell Rep. 25: 274-280, 2006. Go to original source...
  23. Khan, F.A., Ahmad, S., Siddiqui, S.A.: Microsporogenesis and development of male gametophyte in some Solanum species. - Beitr. Biol. Pflanz. 66: 1-7, 1991.
  24. Kindiger, B., Beckett, J.B.: A hematoxilin staining procedure for maize pollen grain chromosomes. - Stain Technol. 60: 265-269, 1985. Go to original source...
  25. Koltunow, A.M., Truettner, J., Cox, K.H., Wallroth, M., Goldberg, R.B.: Different temporal and spatial gene expression. - Plant Cell 2: 1201-1224, 1990. Go to original source...
  26. Koti, S., Reddy, K.R., Kakani, V.G., Zhao, D., Reddy, V.R.: Soybean (Glycine max) pollen germination characteristics, flower and pollen morphology in response to enhanced ultraviolet-B radiation. - Ann. Bot. 94: 855-864, 2004. Go to original source...
  27. Lauxen, M.S., Kaltchuk-Santos, E., Hu, C., Callegari-Jacquesi, S.M., Bodanese-Zanettini, M.H.: Association between floral bud size and developmental stage in soybean microspores. - Braz. Arch. Biol. Technol. 46: 515-520, 2003. Go to original source...
  28. Lee, Y., Kim, E.S., Choi, Y. Hwang, I., Staiger, J., Chung, Y.Y., Lee, Y.: The Arabidopsis phosphatildylinositol-3-kinase is important for pollen development. - Plant Physiol. 147:1886-1897, 2008.
  29. Li, D.X., Lin, M.Z., Wang, Y.Y., Tian, H.Q.: Synergid: a key link in fertilization of angiosperms. - Biol. Plant. 53: 401-407, 2009. Go to original source...
  30. Liu, W., Zheng, M.Y., Polle, E.A., Konzak, C.F.: Highly efficient doubled-haploid production in wheat (Triticum aestivum L.) via induced microspore embryogenesis. - Crop Sci. 42: 686-692, 2002. Go to original source...
  31. Mariani, C., Beuckeleer, M.D., Truettner, J., Leemans, J., Goldberg, R.B.: Induction of male sterility in plants by a chimaric ribonuclease gene. - Nature 347: 737-741, 1990. Go to original source...
  32. Mascarenhas J.P.: The biochemistry of angiosperm pollen development. - Bot. Rev. 41: 259-314, 1975. Go to original source...
  33. McCormick, S.: Control of male gametophyte development. - Plant Cell 16(Suppl.): S142-S153, 2004. Go to original source...
  34. Nowack, M.K., Grini, P.E., Jakoby, M.J., Lafos, M., Koncz, C., Schnittger, A.: A positive signal from the fertilization of the egg cell sets off endosperm proliferation in angiosperm embryogenesis. - Nat. Genet. 38: 63-67, 2006. Go to original source...
  35. Ospina, B., Ceballos, H.: La yuca en el tercer milenio.[Cassava in the Third Milenium.] - CIAT Publication, Cali 2002. [In Span.]
  36. Owen, H.A., Makaroff, C.A.: Ultrastructure of microsporogenesis and microgametogenesis in Arabidopsis thaliana (L.) Heynh. ecotype Wassilewskija (Brassicaceae). - Protoplasma 185: 7-21, 1995. Go to original source...
  37. Ressayre, A., Raquin, C., Mignot, A., Godelle, B, Gouyon, P.H.: Correlated variation in microtubule distribution, callose deposition during male post-meiotic cytokinesis, and pollen aperture number across Nicotiana species (Solanaceae). - Amer. J.Bot. 89: 393-400, 2002. Go to original source...
  38. Reynolds, E.S.: The use of lead citrate at high pH as an electron-opaque stain for electron microscopy. - J. cell. Biol. 17: 208-213, 1963. Go to original source...
  39. Rowley, J.R., Claugher, D., Skvarla, J.J.: Structure of the exine in Artemisia vulgaris (Asteraceae): a review. - Taiwania 44:1-21, 1999.
  40. Scott, R.J., Spielman, M., Dickinson, H.G.: Stamen structure and function. - Plant Cell 16(Suppl.): S46-S60, 2004. Go to original source...
  41. Scott, R., Hodge, R., Paul, W., Draper, J.: The molecular biology of anther differentiation. - Plant Sci. 80: 167-191, 1991. Go to original source...
  42. Summers, W.L., Jaramillo, J., Bailey, T.: Microspore developmental stage and anther length influence the induction of tomato anther callus. - HortScience 27: 838-840, 1992. Go to original source...
  43. Taskin, K.M., Turgut, K. Scott, R.J.: Apomeiotic pollen mother cell development in the apomictic Boechera species. - Biol. Plant. 53: 468-474, 2009. Go to original source...
  44. Tomasi, P., Dierig, D.A., Backhaus, R.A., Pigg, K.B.: Floral bud and mean petal length as morphological predictors of microspore cytological stage in Lesquerella. - HortScience 34: 1269-1270, 1999. Go to original source...
  45. Widholm, J.M.: The use of fluorescein diacetate and phenolsaphranine for determining viability of the cultured plant cells. - Stain Technol. 47: 189-194, 1972. Go to original source...