Biologia plantarum 55:634, 2011 | DOI: 10.1007/s10535-011-0161-0

Heterologous expression of P5CS gene in chickpea enhances salt tolerance without affecting yield

S. Kiran Kumar Ghanti1,6,*, K. G. Sujata2, B. M. Vijay Kumar3, N. Nataraja Karba2, K. Janardhan Reddy4, M. Srinath Rao1, P. B. Kavi Kishor5
1 Department of Botany, Gulbarga University, Gulbarga, India
2 Department of Crop Physiology, University of Agricultural Science, Bengaluru, India
3 Indian Institute of Science, Bengaluru, India
4 Department of Botany, Osmania University, Hyderabad, India
5 Department of Genetics, Osmania University, Hyderabad, India
6 Department of Plant Physiology, University of Agricultural Science, Bengaluru, India

Vigna Δ1-pyrroline-5-carboxylate synthetase (P5CS) cDNA was transferred to chickpea (Cicer arietinum L.) cultivar Annigeri via Agrobacterium tumefaciens mediated transformation. Following selection on hygromycin and regeneration, 60 hygromycin-resistant plants were recovered. Southern blot analysis of five fertile independent lines of T0 and T1 generation revealed single and multiple insertions of the transgene. RT-PCR and Western blot analysis of T0 and T1 progeny demonstrated that the P5CS gene is expressed and produced functional protein in chickpea. T1 transgenic lines accumulated higher amount of proline under 250 mM NaCl compared to untransformed controls. Higher accumulation of Na+ was noticed in the older leaves but negligible accumulation in seeds of T1 transgenic lines as compared to the controls. Chlorophyll stability and electrolyte leakage indicated that proline overproduction helps in alleviating salt stress in transgenic chickpea plants. The T1 transgenics lines were grown to maturity and set normal viable seeds under continuous salinity stress (250 mM) without any reduction in plant yield in terms of seed mass.

Keywords: Agrobacterium tumefaciens; Cicer arietinum; Δ1-pyrroline-5-carboxylate synthetase; NaCl; proline accumulation; RT-PCR; Southern blot; Western blot

Received: November 30, 2009; Accepted: June 1, 2010; Published: December 1, 2011Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Kiran Kumar Ghanti, S., Sujata, K.G., Kumar, B.M., Karba, N., Reddy, K., Rao, M., & Kishor, P.B. (2011). Heterologous expression of P5CS gene in chickpea enhances salt tolerance without affecting yield. Biologia plantarum55(4), 634. doi: 10.1007/s10535-011-0161-0.
Download citation

References

  1. Arnon, D.I., McSwain, B.D, Tsujimoto, H.Y., Wada, K.: Photochemical activity and components of membrane preparation from blue-green algae. I. Coexistence of two photosystems in relation to chlorophyll a and removal of phycocyanin. - Biochem. Biophys. Acta. 357: 231-245, 1974. Go to original source...
  2. Bates, L.S., Waldren, R.P., Teeare, I.D.: Rapid determination of free Pro for water-stress studies. - Plant Soil 39: 205-207, 1973. Go to original source...
  3. Delauney, A.J., Verma, D.P.S.: Proline biosynthesis and osmoregulation in plants.- Plant J. 4: 215-223, 1993. Go to original source...
  4. Doyle, J.J., Doyle, J.L.: Isolation of plant DNA from plant fresh tissue. - BRL Focus. 12: 13-14, 1989.
  5. Dua, R.P.: Differential response of chickpea (Cicer arietinum) genotypes to salinity. - J. agr. Sci. 119: 367-371, 1992. Go to original source...
  6. Dua, R.P., Sharma, P.C.: Salinity tolerance of Kabuli and Desi chickpea genotypes. - Int. Chickpea/Pigeonpea News Lett. 2: 19-22, 1995.
  7. Ermawati, N., Liang, Y.S., Cha, J.Y., Shin, D., Jung, M.H., Lee, J.J., Lee, B.H., Han, C.D., Lee, K.H., Son, D: A new TIP homolog, ShTIP, from Salicornia shows a different involvement in salt stress compared to that of TIP from Arabidopsis. - Biol. Plant. 53: 271-277, 2009. Go to original source...
  8. Garg, A.K., Kim, J.K., Owens, T.G., Ranwala, A.P., Choi, Y.D., Kochian, L.V., Wu, R.J.: Trehalose accumulation in rice plants confers high tolerance levels to different abitoic stresses. - Proc. nat. Acad. Sci. USA 99: 15898-15903, 2002. Go to original source...
  9. Greenway, H., Munns, R.: Mechanisms of salt tolerance in non halophytes. - Annu. Rev. Plant Physiol. 31: 149-190, 1980. Go to original source...
  10. Han, K.H., Hwang, C.H.: Salt tolerance enhanced by transformation of a P5CS gene in carrot. - J. Plant Biotechnol. l5: 149-153, 2003.
  11. Hu, C., Delauney, A., Verma, D.: A bifunctional enzyme (Delta;1-pyrroline-5-carboxylate synthetase) catalyzes the first two steps in proline biosynthesis in plants. - Proc. nat. Acad. Sci. USA 89: 9354-9358, 1992. Go to original source...
  12. Jefferson, R.A.: Assaying chimeric genes in plants the GUS gene fusion system. - Plant mol. Biol. Rep. 5: 387-405, 1987. Go to original source...
  13. Kasuga, M., Liu, Q., Miura, S., Yamaguchi-Shinozaki, K., Shinozaki, K.: Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. - Nat. Biotechnol. 17: 287-291, 1999. Go to original source...
  14. Kavi Kishor, P.B., Hong, Z., Miao, G.H, Hu, C.A.A., Verma, D.P.S.: Over expression of Δ1-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. - Plant Physiol. 108: 1387-1394, 1995. Go to original source...
  15. Kavi Kishor, P.B., Sangam, S., Amrutha, R.N, Sri Laxmi, P., Naidu Rao, K.R, Sreenath Rao, Reddy, K.J., Theriappan, P., Sreenivasulu, N.: Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. - Curr. Sci. 88: 422-443, 2005.
  16. Kiran Ghanti, S., Sujata, K.G., Srinath Rao, M.: The effect of phenyl acetic acid on shoot bud induction, elongation and rooting of chickpea. - Biol. Plant. 53: 779-783, 2009. Go to original source...
  17. Kovtun, Y., Chiu, W.L., Tena, G., Sheen, J.: Functional analysis of oxidative stress-activated MAPK cascade in plants. - Proc. nat. Acad. Sci. USA 97: 2940-2945, 2000. Go to original source...
  18. Lauter, D.J., Munns, D.N.: Salt sensitivity of chickpea during vegetative growth and at different humidities. - Aust. J. Plant Physiol. 14: 171-180, 1987. Go to original source...
  19. Leisinger, T.: Biosynthesis of proline. - In: Neidhart, F.C., Ingraham, J.L., Low, K.B., Magasanik, B., Schaechter, M., Umbarger, H.E. (ed.): Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology. Pp. 346-351. American Society for Microbiology, Washington 1987.
  20. Leopold, A.C., Willing, R.P.: Evidence for toxicity effects of salt on membrane. - In: Staples, R.C., Tonnessen, G.H. (ed.): Salinity Tolerance in Plants. Strategies for Crop Improvement. Pp. 67-76. Wiley and Sons, New York 1984.
  21. Murashige, T, Skoog, F.: A revised medium for rapid growth and bioassays with tobacco tissue cultures. - Physiol. Plant. 15: 473-497, 1962. Go to original source...
  22. Saijo, Y., Hata, S., Kyozuka, J., Shimamoto, K., Izui, K.: Overexpression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. - Plant J. 23: 319-327, 2000. Go to original source...
  23. Sambrook, J., Fritish, E.F, Maniatis, T.: Molecular Cloning: a Molecular Manual. 2nd Ed. - Cold Spring Harbor Laboratory Press. Cold Spring Harbor - New York 1989.
  24. Sanchayita, K., Tony, M.J., Pritilata, N., Sen, S.K.: Efficient transgenic plant regeneration through Agrobacteriummediated transformation of chickpea (Cicer arietinum L.). - Plant Cell Rep. 16: 32-37, 1996.
  25. Saradhi, A., Saradhi, P.P.: Proline accumulation under heavy metal stress. - J. Plant Physiol. 138: 554-558, 1991.
  26. Sawahel, W.A., Hassan, A.H.: Generation of transgenic wheat plants producing high levels of the osmoprotectant proline. - Biotechnol. Lett. 24: 721-725, 2002. Go to original source...
  27. Sayari, A.H., Bouzid, R.G., Bidani, A., Jaoua, L., Savoure, A., Jaoua, S.: Over expression of Δ1-pyrroline-5-carboxylate synthetase increases proline production and confers salt tolerance in transgenic potato plants. - Plant Sci. 169: 746-752, 2005. Go to original source...
  28. Schobert, B., Tschesche, H.: Unusual solution properties of proline and its interaction with proteins. - Biochim. Biophys. Acta 541: 270-277, 1978. Go to original source...
  29. Singla-Pareek, S.L., Reddy, M.K., Sopory, S.K.: Genetic engineering of the glyoxalase pathway in tobacco leads to enhanced salinity tolerance. - Proc. nat. Acad. Sci. USA. 100: 14672-14677, 2003. Go to original source...
  30. Smirnoff, N., Cumbes, Q.J.: Hydroxyl radical scavenging activity of compatible solutes. - Phytochemistry 28: 1057-1060, 1989. Go to original source...
  31. Veena Reddy, V.S., Sopory, S.K.: Glyoxalase I from (Brassica juncea) molecular cloning, regulation, and its over expression confer tolerance in transgenic tobacco under stress. - Plant J. 17: 385-395, 1999. Go to original source...
  32. Venekamp, J.H., Lampe, J.E.M., Koot, J.T.M.: Organic acids as sources of drought induced proline synthesis in field bean plants (Vicia faba L.) - J. Plant Physiol. 133: 654-659, 1989. Go to original source...
  33. Verwoerd, T.H.C., Dekker, B.M.M., Hoekema, A.: A smallscale procedure for the rapid isolation of plant RNAs. - Nucl. Acids Res. 6: 23-62, 1989. Go to original source...
  34. Winicov, I.: Alfin1 transcription factor over expression enhances plant root growth under normal and saline conditions and improves salt tolerance in alfalfa. - Planta 210: 416-422, 2000. Go to original source...
  35. Xu, D., Duan, X., Wang, B., Hong, B., Ho, T.H.D., Wu, R.: Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice.- Plant Physiol. 110: 249-257,1996. Go to original source...
  36. Zhang, H.K., Hodson, J.N., Williams, J.P., Blumwald, E.: Engineering salt-tolerant (Brassica) plants: characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation. - Proc. nat. Acad. Sci. USA 98: 12832-12836, 2001. Go to original source...
  37. Zhu, B., Su, J., Chang, M., Verma, D.P.S., Fan, Y.L., Wu, R.: Overexpression of a Δ1-pyrroline-5-carboxylate synthetase gene and analysis of tolerance to water and salt-stress in transgenic rice. - Plant Sci. 139: 41-48, 1998. Go to original source...