Biologia plantarum 2015, 59:735-744 | DOI: 10.1007/s10535-015-0538-6

Roles for NO and ROS signalling in pollen germination and pollen-tube elongation in Cupressus arizonica

S. Pasqualini1,*, M. Cresti2, C. Del Casino2, C. Faleri2, G. Frenguelli3, E. Tedeschini3, L. Ederli1
1 Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
2 Department of Life Sciences, University of Siena, Siena, Italy
3 Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy

Roles for nitric oxide (NO) and reactive oxygen species (ROS) during pollen-tube growth have been well established in angiosperms, but there remains lack of information regarding their potential signalling roles in pollen tubes in gymnosperms. Here, the pollen-tube elongation of Arizona cypress (Cupressus arizonica Greene) was investigated. Nitric oxide, ROS, and actin were detected using their respective fluorescent probes. Both NO and ROS were observed in the nuclei of generative cells and pollen-tube cells, and in the cytoplasm in the tip region. An intracellular NO content in the pollen cells was lowered using an NO scavenger or an NO-synthase inhibitor. Similarly, an endogenous ROS content in the pollen cells was lowered using an NAD(P)H oxidase inhibitor. These treatments reduced pollen germination and pollen-tube growth, and induced severe morphological abnormalities. Inhibition of NO and ROS accumulation also severely disrupted the actin cytoskeleton in the pollen tubes. These data indicate that NO and ROS had signalling roles in pollen germination and pollen-tube formation in cypress.

Keywords: actin; cypress; cytoskeleton; hydrogen peroxide
Subjects: nitric oxide; reactive oxygen species; pollen germination; pollen tubes; actin; hydrogen peroxide; cytoskelet; cypress
Species: Cupressus arizonica

Received: February 25, 2015; Revised: April 30, 2015; Accepted: May 11, 2015; Published: December 1, 2015Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Pasqualini, S., Cresti, M., Casino, C., Faleri, C., Frenguelli, G., Tedeschini, E., & Ederli, L. (2015). Roles for NO and ROS signalling in pollen germination and pollen-tube elongation in Cupressus arizonica. Biologia plantarum59(4), 735-744. doi: 10.1007/s10535-015-0538-6.
Download citation

References

  1. Arilla, M.C., Ibarrola, I., Garcia, R., De la Hoz, B., Martinez, A.: Quantification of the major allergen from cypress (Cupressus arizonica) pollen, Cup a 1, by monoclonal antibody-based ELISA. - Int. Arch. Allergy Immunol. 134: 10-16, 2004. Go to original source...
  2. Åström, H., Sorri, O., Raudaskoski, M.: Role of microtubules in the movement of the vegetative nucleus and generative cell in tobacco pollen tubes. - Sex. Plant Reprod. 8: 61-69, 1995.
  3. Bell, E., Takeda, S., Dolan, L.: Reactive oxygen species in growth and development. - In: Rio, L.A., Puppo, A. (ed.): Reactive Oxygen Species in Plant Signalling. Pp. 43-53. Springer, Berlin - Heidelberg 2009.
  4. Bhattacharjee, S.: The language of reactive oxygen species signaling in plants. - J. Bot. 2012: 1-22, 2012. Go to original source...
  5. Boisson-Dernier, A., Lituiev, D.S., Nestorova, A., Franck, C.M., Thirugnanarajah, S., Grossniklaus, U.: ANXUR receptor-like kinases coordinate cell wall integrity with growth at the pollen tube tip via NADPH oxidases. - PLoS Biol. 11: e1001719, 2013. Go to original source...
  6. Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilising the principle of protein-dye binding. - Anal. Biochem. 72: 248-254, 1976. Go to original source...
  7. Bright, J., Hiscock, S.J., James, P.E., Hancock, J.T.: Pollen generates nitric oxide and nitrite: a possible link to polleninduced allergic responses. - Plant Physiol. Biochem. 47: 49-55, 2009. Go to original source...
  8. Carol, R.J., Dolan, L.: The role of reactive oxygen species in cell growth: lessons from root hairs. - J. exp. Bot. 57: 1829-1834, 2006.
  9. Chichiriccò, G., Pacini, E.: Cupressus arizonica pollen wall zonation and in vitro hydration. - Plant Syst. Evol. 270: 231-242, 2008. Go to original source...
  10. Chichiriccò, G., Spanò, L., Torraca, G., Tartarini, A.: Hydration, sporoderm breaking and germination of Cupressus arizonica pollen. - Plant Biol. 11: 359-368, 2009. Go to original source...
  11. Danti, R., Della Rocca, G., Calamassi, R., Mori, B., Mariotti Lippi, M.: Insights into a hydration regulating system in Cupressus pollen grain. - Ann. Bot. 108: 299-306, 2011. Go to original source...
  12. Duan, Q., Kita, D., Johnson, E.A., Aggarwal, M., Gates, L., Wu, H.M., Cheung, A.Y.: Reactive oxygen species mediate pollen-tube rupture to release sperm for fertilization in Arabidopsis. - Nat. Commun. 5: 3129, 2014. Go to original source...
  13. Fernando, D.D., Lazzaro, M.D., Owens, J.N.: Growth and development of conifer pollen tubes. - Sex. Plant Reprod. 18: 149-162, 2005. Go to original source...
  14. Foissner, I., Wendehenne, D., Langebartels, C., Durner, J.: In vivo imaging of an elicitor-induced nitric oxide burst in tobacco. - Plant J. 23: 817-824, 2000. Go to original source...
  15. Fu, Y.: The actin cytoskeleton and signaling network during pollen tube tip growth. - J. Integr. Plant Biol. 52: 131-137, 2010. Go to original source...
  16. Hepler, P.K., Vidali, L., Cheung, A.Y.: Polarized cell growth in higher plants. - Annu. Rev. Cell dev. Biol. 17: 159-187, 2001. Go to original source...
  17. Heslop-Harrison, J., Heslop-Harrison, Y.: Myosin associated with the surfaces of organelles, vegetative nuclei and generative cells in angiosperm pollen grains and tubes. - J. Cell Sci. 94: 319-325, 1989.
  18. Heslop-Harrison, J., Heslop-Harrison, Y., Shivanna, K.R.: The evaluation of pollen quality and a further appraisal of flourochromatic (FCR) test procedure. - Theor. appl. Genet. 67: 367-375, 1984. Go to original source...
  19. Kasprowicz, A., Szuba, A., Volkmann, D., Baluska, F., Wojtaszek, P.: Nitric oxide modulates dynamic actin cytoskeleton and vesicle trafficking in a cell type-specific manner in root apices. - J. exp. Bot. 60: 1605-1617, 2009. Go to original source...
  20. Kaya, H., Nakajima, R., Iwano, M., Kanaoka, M.M., Kimura, S., Takeda, S., Kawarazaki, T., Senzaki, E., Hamamura, Y., Higashiyama, T., Takayama, S., Abe, M., Kuchitsu, K.: Ca2+-activated reactive oxygen species production by Arabidopsis RbohH and RbohJ is essential for proper pollen tube tip growth. - Plant Cell 26: 1069-1080, 2014. Go to original source...
  21. Kojima, H., Nakatsubo, N., Kikuchi, K., Kawaahara, S., Kirino, Y., Nagoshi, H., Hirata, Y., Nagano, T.: Detection and imaging of nitric oxide with novel fluorescent indicators: diaminofluoresceins. - Anal. Chem. 70: 2446-2453, 1998. Go to original source...
  22. Lassig, R., Gutermuth, T., Bey, T.D., Konrad, K.R., Romeis, T.: Pollen tube NAD(P)H oxidases act as a speed control to dampen growth rate oscillations during polarized cell growth. - Plant J. 78: 94-106, 2014. Go to original source...
  23. Lazzaro, M.D., Cardenas, L., Bhatt, A.P., Justus, C.D., Phillips, M.S., Holdaway-Clarke, T.L., Hepler, P.: Calcium gradients in conifer pollen tubes; dynamic properties differ from those seem in angiosperms. - J. exp. Bot. 56: 2619-2628, 2005. Go to original source...
  24. Lovy-Wheeler, A., Wilsen, K.L., Baskin, T.I., Hepler, P.K.: Enhanced fixation reveals the apical cortical fringe of actin filaments as a consistent feature of the pollen tube. - Planta. 221: 95-104, 2005. Go to original source...
  25. McInnis, S.M., Desikan, R., Hancock, J.T., Hiscock, S.J.: Production of reactive oxygen species and reactive nitrogen species by angiosperm stigmas and pollen: potential signalling crosstalk? - New Phytol. 172: 221-228, 2006. Go to original source...
  26. Misra, A.N., Misra, M., Singh, R.: Nitric oxide: A ubiquitous signaling molecule with diverse role in plants. - Afr. J. Plant Sci. 5: 57-74, 2011.
  27. Mittler, R., Vanderauwera, S., Gollery, M., Van Breusegem, F.: Reactive oxygen gene network of plants. - Trends Plant Sci. 9: 490-498, 2004. Go to original source...
  28. Moreau, M., Lindermayr, C., Durner, J., Klessig, D.F.: NO synthesis and signaling in plants - where do we stand? - Physiol. Plant. 138: 372-383, 2010. Go to original source...
  29. Mori, I.C., Schroeder, J.I.: Reactive oxygen species activation of plant Ca2+ channels. A signaling mechanism in polar growth, hormone transduction, stress signaling, and hypothetically mechanotransduction. - Plant Physiol. 135: 702-708, 2004. Go to original source...
  30. Pasqualini, S., Tedeschini, E., Frenguelli, G., Wopfner, N., Ferreira, F., D'Amato, G., Ederli, L.: Ozone affects pollen viability and NAD(P)H oxidase release from Ambrosia artemisiifolia pollen. - Environ. Poll. 159: 2823-2830, 2011. Go to original source...
  31. Potocký, M., Jones, M.A., Bezvoda, R., Smirnoff, N., Žárský, V.: Reactive oxygen species produced by NADPH oxidase are involved in pollen tube growth. - New Phytol. 174: 742-751, 2007. Go to original source...
  32. Prado, A.M., Colaço, R., Moreno, N., Silva, A.C., Feijó, J.A.: Targeting of pollen tubes to ovules is dependent on nitric oxide (NO) signaling. - Mol. Plant. 1: 703-714, 2008. Go to original source...
  33. Prado, A.M., Feijo, J.A.: Calcium, NO, and cGMP signaling in plant cell polarity. - In Hayat, S., Mori, M., Pichtel, J., Ahmad, A. (ed.): Nitric Oxide in Plant Physiology. Pp. 31-50. Wiley, Weinheim 2009.
  34. Prado, A.M., Porterfield, D.M., Feijó, J.A.: Nitric oxide is involved in growth regulation and re-orientation of pollen tubes. - Development 131: 2707-2714, 2004. Go to original source...
  35. Qu, X., Jiang, Y., Chang, M., Liu, X., Zhang, R., Huang, S.: Organization and regulation of the actin cytoskeleton in the pollen tube. - Front. Plant Sci. 5: 786, 2015. Go to original source...
  36. Ren, H., Xiang, Y.: The function of actin-binding proteins in pollen tube growth. - Protoplasma 230: 171-182, 2007. Go to original source...
  37. Ribeiro, E.A., Cunha, F.Q., Tamashiro, W.M.S.C., Martins, I.S.: Growth phase-dependent subcellular localization of nitric oxide synthase in maize cells. - FEBS Lett. 445: 283-286, 1999. Go to original source...
  38. Sagi, M., Fluhr, R.: Production of reactive oxygen species by plant NADPH oxidases. - Plant Physiol. 141: 336-340, 2006. Go to original source...
  39. Šamaj, J., Baluška, F., Menzel, D.: New signalling molecules regulating root hair tip growth. - Trends Plant Sci. 9: 217-220, 2004.
  40. Setsukinai, K., Urano, Y., Kakinuma, K., Mmajima, H.J., Nagano, T.: Development of novel fluorescence probes that can reliably detect reactive oxygen species and distinguish specific species. - J. biol. Chem. 278: 3170-3175, 2003. Go to original source...
  41. Smirnova, A.V., Matveyeva, N.P., Yermakov, I.P.: Reactive oxygen species are involved in regulation of pollen wall cytomechanics. - Plant Biol. 16: 252-257, 2014. Go to original source...
  42. Speranza, A., Crinelli, R., Scoccianti, V., Geitmann, A.: Reactive oxygen species are involved in pollen tube initiation in kiwifruit. - Plant Biol. 14: 64-76, 2012.
  43. Ushio-Fukai, M.: Localizing NADPH oxidase-derived ROS. - STKE 349: re8, 2006.
  44. Vidali, L., Rounds, C.M., Hepler, P.K., Bezanilla, M.: LifeactmEGFP reveals a dynamic apical F-actin network in tip growing plant cells. - PLoS One 4: e5744, 2009. Go to original source...
  45. Wang, C.L., Wu, J., Xu, G.H., Gao, Y.B., Chen, G., Wu, J.Y., Wu, H.Q., Zhang, S.L.: S-RNase disrupts tip-localized reactive oxygen species and induces nuclear DNA degradation in incompatible pollen tubes of Pyrus pyrifolia. - J. Cell Sci. 123: 4301-4308, 2010. Go to original source...
  46. Wang, Y., Chen, T., Zhang, C., Hao, H., Liu, P., Zheng, M., Baluška, F., Šamaj, J., Lin, J.: Nitric oxide modulates the influx of extracellular Ca2+ and actin filament organization during cell wall construction in Pinus bungeana pollen tubes. - New Phytol. 182: 851-862, 2009. Go to original source...
  47. Wang, Y.H., Li, X.C., Zhu-Ge, Q., Jiang, X., Wang, W.D., Fang, W.P., Chen, X., Li, X.H.: Nitric oxide participates in cold-inhibited Camellia sinensis pollen germination and tube growth partly via cGMP in vitro. - PLoS One 7: e52436, 2012. Go to original source...