Biologia plantarum 2018, 62:369-378 | DOI: 10.1007/s10535-018-0775-6

Characterization of novel D-hordeins from Psathyrostachys juncea

X. K. Hu1,2, S. F. Dai1, T. Ouellet2, M. Balcerzak2, H. Rocheleau2, S. Khanizadeh2, Z. J. Pu3, Z. H. Yan1,*
1 Triticeae Research Institute, Sichuan Agricultural University, Chengdu, PR China
2 Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Canada
3 Crop Research Institute, Sichuan Academy of Agricultural Science, Chengdu, PR China

Three genes encoding novel D-hordeins, Ns 1.3, Ns 2.6, and Ns 2.9 were isolated from Psathyrostachys juncea. The Ns 1.3 differed from Ns 2.6 and Ns 2.9 by having a shorter open reading frame (< 1.5 kb versus > 2.5 kb), and was probably not expressed as a normal protein, while the activities for Ns 2.6 and Ns 2.9 were verified by bacterial expression. Though highly similar primary structure to wheat high molecular mass glutenin subunits (HMM-GSs) and barley D-hordeins, Ns 2.6 and Ns 2.9 had more cysteine residues (nine in total) and a larger molecular mass than HMMGSs, and a longer N-terminal length than D-hordeins. Phylogenetic analysis revealed that the Ps. juncea D-hordeins were divided into Ns 1.3 type and Ns 2.6/Ns 2.9 type. Divergence times indicated that Ns 1.3 diverged the earliest from the orthologous Triticeae locus, while Ns 2.6 and Ns 2.9 and the D-hordeins from two Hordeum species diverged nearly at the same time from those loci, and the divergence between the D-hordeins of H. chilense and Ns 2.6/Ns 2.9 was more recent than between the two Hordeum species. The novel Ps. juncea D-hordeins have the potential to be very important for improving the end-use quality of wheat flours because of the presence of extra cysteine residues and longer repetitive domain, in addition they can contribute to the understanding of the evolution of Triticeae prolamins.

Keywords: bacterial expression; Hordeum chilense; H. vulgare; HMM-prolamins; phylogenetic analysis; Triticum aestivum
Subjects: D-hordeins; prolamins; phylogenetic analysis; amino acid sequences; barley
Species: Psathyrostachys juncea; Hordeum vulgare; Hordeum chilense

Received: March 15, 2017; Revised: August 19, 2017; Accepted: August 24, 2017; Published: June 1, 2018Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Hu, X.K., Dai, S.F., Ouellet, T., Balcerzak, M., Rocheleau, H., Khanizadeh, S., Pu, Z.J., & Yan, Z.H. (2018). Characterization of novel D-hordeins from Psathyrostachys juncea. Biologia plantarum62(2), 369-378. doi: 10.1007/s10535-018-0775-6.
Download citation

Supplementary files

Download filebpl-201802-0019_S1.pdf

File size: 98.34 kB

References

  1. Alvarez, J.B., Ballesteros, J., Sillero, J.A., Martín, L.M.: Tritordeum: a new crop of potential importance in the food industry. - Hereditas 116: 193-197, 1992.
  2. Alvarez, J.B., Campos, L.A.C., Martín, A., Sillero, J.A., Martín, L.M.: Genetic analysis of prolamins synthesised by the Hch genome and their effects on gluten strength in hexaploid Tritordeum. - Euphytica 107: 177-184, 1999. Go to original source...
  3. Atanassov, P., Borries, C., Zaharieva, M., Monneveux, P.: Hordein polymorphism and variation of agromorphological traits in a collection of naked barley. - Genet. Resour. Crop Evol. 48: 353-360, 2001. Go to original source...
  4. Baden, C., Bothmer, R., Flink, J., Jacobsen, N.: Intergeneric hybridization between Psathyrostachys and Hordeum. - Nord. J. Bot. 9: 333-342, 1989. Go to original source...
  5. Baden, C.: A taxonomic revision of Psathyrostachys (Poaceae). - Nord. J. Bot. 11: 3-26, 1991. Go to original source...
  6. Blake, T.K., Ullrich, S.E., Nilan, R.A.: Mapping of the Hor-3 locus encoding D hordein in barley. - Theor. appl. Genet. 63: 367-371, 1982. Go to original source...
  7. Cao, Z., Deng, Z., Wang, M., Wang, X., Jing, J., Zhang, X., Shang, H., Li, Z.: Inheritance and molecular mapping of an alien stripe-rust resistance gene from a wheat-Psathyrostachys huashanica translocation line. - Plant Sci. 174: 544-549, 2008. Go to original source...
  8. Dai, S.F., Pu, Z.J., Liu, D.C., Wei, Y.M., Zheng, Y.L., Hu, X.K., Yan, Z.H.: Characterization of novel HMW-GS in two diploid species of Eremopyrum. - Gene 519: 55-59, 2013. Go to original source...
  9. Doyle, J.J., Doyle, J.L.: Isolation of plant DNA from fresh tissue. - Focus 12: 13-15, 1990.
  10. Du, W.L., Wang, J., Lu, M., Sun, S.G., Chen, X.H., Zhao, J.X., Yang, Q.H., Wu, J.: Characterization of a wheat-Psathyrostachys huashanica Keng 4Ns disomic addition line for enhanced tiller numbers and stripe rust resistance. - Planta 239: 97-105, 2014. Go to original source...
  11. Feeney, K.A., Wellner, N., Gilbert, S.M., Halford, N.G., Tatham, A.S., Shewry, P.R., Belton, P.S.: Molecular structures and interactions of repetitive peptides based on wheat glutenin subunits depend on chain length. - Biopolymers 72: 123-131, 2003. Go to original source...
  12. Gaut, B.S.: Evolutionary dynamics of grass genomes. - New Phytol. 154: 15-28, 2002. Go to original source...
  13. Gilbert, S.M., Wellner, N., Belton, P.S., Greenfield, J.A., Siligardic, G., Shewry, P.R., Tatham, A.S.: Expression and characterization of a highly repetitive peptide derived from a wheat seed storage protein. - BBA 1479: 135-146, 2000.
  14. Gu, Y.Q., Anderson, O.D., Londeore, C.F., Kong, X., Chibbar, R.N., Lazo, G.R.: Structural organization of the barley D-hordein locus in comparison with its orthologous regions of wheat genomes. - Genome 46: 1084-1097, 2003. Go to original source...
  15. Halford, N.G., Tatham, A.S., Sui, E., Daroda, L., Dreyer, T., Shewry, P.R.: Identification of a novel beta-turn-rich repeat motif in the D-hordeins of barley. - Biochem. biophys. Anal. 1122: 118-122, 1992.
  16. Hsiao, C., Wang, R.R.C., Dewey, D.R.: Karyotype analysis and genome relationships of 22 diploid species in the tribe Triticeae. - Can. J. Genet. Cytol. 28: 109-120, 1986. Go to original source...
  17. Huang, S., Sirikhachornkit, A., Su, X., Faris, J., Gill, B., Haselkorn, R., Gornicki, P.: Genes encoding plastid acetyl- CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploid wheat. - Proc. nat. Acad. Sci. USA 99: 8133-8138, 2002. Go to original source...
  18. Kong, L.N., Liang, Y., Qin, L.M., Sun, L., Xia, G.M., Liu, S.W.: Characterization of high molecular weight glutenin subunit genes from the Ns genome of Psathyrostachys juncea. - Dev. Genes Evol. 224: 189-196, 2014. Go to original source...
  19. Liu, S.W., Zhao, F., Gao, X., Chen, F.G., Xia, G.M.: A novel high molecular weight glutenin subunit from Australopyrum retrofractum. - Amino Acids 39: 385-392, 2010. Go to original source...
  20. Ma, D.F., Fang, Z.W., Yin, J.L., Chao, K.X., Jing, J.X., Li, Q., Wang, B.T.: Molecular mapping of stripe rust resistance gene YrHu derived from Psathyrostachys huashanica. - Mol. Breed. 36: 64, 2016. Go to original source...
  21. Martín, A., Alvarez, J.B., Martín, L.M., Barro, F., Ballesteros, J.: The development of Tritordeum: a novel cereal for food processing. - J. Cereal Sci. 30: 85-95, 1999.
  22. Payne, P.I.: Genetics of wheat storage proteins and the effect of allelic variation on bread-making quality. - Plant Biol. 38: 141-153, 1987. Go to original source...
  23. Pistón, F., Shewry, P.R., Barro, F.: D hordeins of Hordeum chilense: a novel source of variation for improvement of wheat. - Theor. appl. Genet. 115: 77-86, 2007. Go to original source...
  24. Popineau, Y., Cornec, M., Lefebvre, J., Marchylo, B.: Influence of high Mr glutenin subunits on glutenin polymers and rheological properties of gluten and gluten subfractions of near-isogenic lines of wheat Sicco. - J. Cereal Sci. 19: 231-241, 1994. Go to original source...
  25. Rasheed, A., Xia, X.C., Yan, Y.M., Appels, R., Mahmood, T., He, Z.H.: Wheat seed storage proteins: Advances in molecular genetics, diversity and breeding applications. - J. Cereal Sci. 60: 11-24, 2014. Go to original source...
  26. Rutschmann, F.: Molecular dating of phylogenetic trees: a brief review of current methods that estimate divergence times. - Divers. Distribut. 12: 35-48, 2006. Go to original source...
  27. Shewry, P.R., Halford, N.G.: Cereal seed storage proteins: structures, properties and role in grain utilization. - J. exp. Bot. 53: 947-958, 2002. Go to original source...
  28. Shewry, P.R., Halford, N.G., Tatham, A.S., Popineau, Y., Lafiandra, D., Belton, P.S.: The high molecular weight subunits of wheat glutenin and their role in determining wheat processing properties. - Adv. Food Nutr. Res. 45: 219-302, 2003. Go to original source...
  29. Shewry, P.R., Tatham, A.S.: The prolamin storage proteins of cereal seeds: structure and evolution. - Biochem. J. 267: 1-12, 1990. Go to original source...
  30. Sun, Y.Q., Pu, Z.J., Dai, S.F., Pu, X.X., Liu, D.C., Wu, B.H., Lan, X.J., Wei, Y.M., Zheng, Y.L., Yan, Z.H.: Characterization of y-type high-molecular-weight glutenins in tetraploid species of Leymus. - Dev. Genes Evol. 224: 57-64, 2014. Go to original source...
  31. Tamás, L., Gras, P.W., Solomon, R.G., Morell, M.K., Appels, R., Békés, F.: Chain extension and termination as a function of cysteine content and the length of the central repetitive domain in storage proteins. - J. Cereal Sci. 36: 313-325, 2002. Go to original source...
  32. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., Kumar, S.: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. - Mol. Biol. Evol. 28: 2731-2739, 2011. Go to original source...
  33. Tatham, A.S., Miflin, B.J., Shewry, P.R.: The beta-turn conformation in wheat gluten proteins: relationship to gluten elasticity. - Cereal Chem. 62: 405-412, 1985.
  34. Thompson, J.D., Higgins, D.G., Gibson, T.J.: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. - Nucleic Acids Res. 22: 4673-4680, 1994. Go to original source...
  35. Wan, Y.F., Wang, D.W., Shewry, P.R., Halford, N.G.: Isolation and characterization of five novel high molecular weight subunit of glutenin genes from Triticum timopheevii and Aegilops cylindrica. - Theor. appl. Genet. 104: 828-839, 2002. Go to original source...
  36. Wellner, N., Marsh, J., Savag, A., Halford, N.G., Shewry, P.R., Mills, E.N.C., Belton, P.S.: Comparison of repetitive sequences derived from high molecular weight subunits of wheat glutenin, an elastomeric plant protein. - Biomacromolecules 7: 1096-1103, 2006. Go to original source...
  37. Wellner, N., Mills, E.N.C., Brownsey, G., Wilson, R.H., Brown, N., Freeman, J., Halford, N.G., Shewry, P.R., Belton, P.S.: Changes in protein secondary structure during gluten deformation studied by dynamic fourier transform infrared spectroscopy. - Biomacromolecules 6: 255-261, 2005. Go to original source...
  38. Yin, Y.Q., Ma, D.Q., Ding, Y.: Analysis of genetic diversity of hordein in wild close relatives of barley from Tibet. - Theor. appl. Genet. 107: 837-842, 2003. Go to original source...
  39. Zhang, H.B., Dvořák, J.: The genome origin of tetraploid species of Leymus (Poaceae: Triticeae) inferred from variation in repeated nucleotides sequences. - Amer. J. Bot. 78: 871-884, 1991. Go to original source...
  40. Zhang, L., Li, Z., Fan, R., Wei, B., Zhang, X.: Structural characterization and evolutionary relationship of highmolecular- weight glutenin subunit genes in Roegnerianakaii and Roegneria alashanica. - Int. J. mol. Sci. 17: 1115, 2016. Go to original source...
  41. Zhao, J.X., Ji, W.Q., Wu, J., Chen, X.H., Cheng, X.N., Wang, J.W., Pang, Y.H., Liu, S.H., Yang, Q.H.: Development and identification of a wheat-Psathyrostachys huashanica addition line carrying HMW-GS, LMW-GS and gliadin genes. - Genet. Resour. Crop Evol. 57: 387-394, 2010. Go to original source...