Biologia plantarum 46:221-225, 2003 | DOI: 10.1023/B:BIOP.0000022255.01125.99

Functioning of the γ-Aminobutyrate Pathway in Wheat Seedlings Affected by Osmotic Stress

I. Bartyzel1, K. Pelczar1, A. Paszkowski1,*
1 Department of Biochemistry, Warsaw Agricultural University, Warszawa, Poland

γ-Aminobutyrate (GABA) was the only amino acid out of three amino acid intermediates of GABA shunt that increased significantly after 28 h from the beginning of osmotic stress induced by 20 % polyethylene glycol 6000 in wheat seedlings. At the same time specific activities of glutamate decarboxylase (GAD) and GABA aminotransferase (GABA-T) two enzymes of GABA pathway did not change as compared with the control plants. The response of two GABA-T activities (with pyruvate or 2-oxoglutarate as amino acid acceptor) to aminooxyacetate, 3-chloro-L-alanine and p-hydroxymercuribenzoate prompted us to suggest that at least two isoforms of GABA-T showing different substrate specificity do exist in wheat leaves.

Keywords: GABA aminotransferase; glutamate decarboxylase; GABA shunt; Triticum aestivum
Subjects: γ-aminobutyrate aminotransferase; amino acids; glutamate dehydrogenase; osmotic stress, γ-aminobutyrate pathway; polyethylene glycol, osmotic stress; Triticum aestivum; wheat, osmotic stress

Published: September 1, 2003Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Bartyzel, I., Pelczar, K., & Paszkowski, A. (2003). Functioning of the γ-Aminobutyrate Pathway in Wheat Seedlings Affected by Osmotic Stress. Biologia plantarum46(2), 221-225. doi: 10.1023/B:BIOP.0000022255.01125.99.
Download citation

References

  1. Akama, K., Akihiro, T., Kitagawa, M., Takaiwa, F.: Rice (Oryza sativa) contains a novel isoform of glutamate decarboxylase that lacks an authentic calmodulin-binding domain at the C-terminus.-Biochim. biophys. Acta 1522: 143-150, 2001. Go to original source...
  2. Bolarín, M.C., Santa Cruz, A., Cayuela, E., Peréz-Alfocea, F.: Short-term solute changes in leaves and roots of cultivated and wild tomato seedlings under salinity.-J. Plant Physiol. 147: 463-468, 1995. Go to original source...
  3. Bown, A.W., Shelp, B.J.: The metabolism and functions of γ-aminobutyric acid.-Plant Physiol. 115: 1-5, 1997. Go to original source...
  4. Bradford, M.M.: A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding.-Anal. Biochem. 72: 248-254, 1976. Go to original source...
  5. Breitkreuz, K.E., Shelp, B.J., Fisher, W.N., Shwacke, R., Rentsch, D.: Identification and characterization of GABA, proline and quaternary ammonium compound transporters from Arabidopsis thaliana.-FEBS Lett. 450: 280-294, 1999. Go to original source...
  6. Bush, K., Fromm, H.: Plant succinic semialdehyde dehydrogenase. Cloning, purification, localization in mitochondria, and regulation by adenine nucleotides.-Plant Physiol. 121: 589-597, 1999. Go to original source...
  7. Chen, Y., Baum, G., Fromm, H.: The 58-kD calmodulin binding glutamate decarboxylase is a ubiquitous protein in Petunia organs and its expression is developmentally regulated.-Plant Physiol. 106: 1381-1387, 1994.
  8. Chung, L., Bown, A.W., Shelp, B.J.: The production and efflux of 4-aminobutyrate in isolated mesophyll cells.-Plant Physiol. 99: 659-664, 1992. Go to original source...
  9. Fisher, W.N., Andre, B., Rentsch, D., Krolkiewicz, S., Tegeder, M., Breitkreutz, K., Fromer, W.B.: Amino acid transport in plants.-Trends Plants Sci. 5: 188-195, 1988.
  10. Hampe, C., Lundgren, P., Daniels, T., Hammerle, L., Marcovina, S., Lernmark, A.: A novel monoclonal antibody specific for the N-terminal end of GAD 65.-J. Neuroimmunol. 113: 63-71, 2001. Go to original source...
  11. Ireland, R.J., Lea, P.: The enzymes of glutamine, glutamate, asparagine and aspartate metabolism.-In: Singh, B.K. (ed.): Plant Amino Acids. Pp. 49-109. Marcel Dekker, New York-Basel-Hong Kong 1999.
  12. Kathiresan, A., Tung, P., Chinnappa, C.C., Reid, D.M.: γ-Aminobutyric acid stimulates ethylene biosynthesis in sunflower.-Plant Physiol. 115: 129-135, 1997. Go to original source...
  13. Miazek, A., Bogdan, J., Zagdańska, B.: Effect of water deficit during germination of wheat seeds.-Biol. Plant. 44: 397-403, 2001. Go to original source...
  14. Morino, Y., Tanase, S.: Quasisubstrates and irreversible inhibitors of aspartate aminotransferase.-In: Christen, P., Metzler, D.E. (ed.): Transaminases. Pp. 251-265. John Wiley and Sons, New York 1985.
  15. Paszkowski, A.: The hydrosulfide groups of glutamate: glyoxylate and serine: glyoxylate aminotransferases from rye (Secale cereale L.) seedlings.-Acta Physiol. Plant. 17: 85-90, 1995.
  16. Rai, V.K.: Role of amino acids in plant responses to stresses.-Biol. Plant. 45: 481-487, 2002. Go to original source...
  17. Ramputh, A.L., Bown, A.W.: Rapid gamma-aminobutyric acid synthesis and the inhibition of growth and development of oblique-banded leaf-roller larvae.-Plant Physiol. 111: 1349-1352, 1996. Go to original source...
  18. Rhodes, D., Versules, P.E., Sharp, R.E.: Role of amino acids in abiotic stress resistance.-In: Singh, B.K. (ed.): Plant Amino Acids. Pp. 319-356. Marcel Dekker, New York-Basel-Hong Kong 1999.
  19. Schwacke, R., Grallath, S., Breitkreutz, K.E., Stransky, E., Stransky, H., Fromer, W.B., Rentsch, D.: LeProT1, a transporter for proline, glycine, betaine and γ-aminobutyric acid in tomato pollen.-Plant Cell 11: 377-391, 1999.
  20. Scott-Taggart, C.P., Van Cauwenberghe, O.R., McLean, M.D., Shelp, B.J.: Regulation of γ-aminobutyric acid synthesis in situ by glutamate availability.-Physiol. Plant. 106: 363-369, 1999. Go to original source...
  21. Shelp, B.J., Bown, A.W., McLean, M.D.: Metabolism and functions of gamma-aminobutyric acid.-Trends Plant Sci. 4: 446-452, 1999. Go to original source...
  22. Shelp, B.J., Walton, C.S., Snedden, W.A., Tuin, L.G., Oresnik, I.J., Layzell, D.D.: GABA shunt in developing soybean seeds is associated with hypoxia.-Physiol. Plant. 94: 219-228, 1995. Go to original source...
  23. Solomon, P.S., Oliver, R.P.: The nitrogen of tomato leaves apoplast increases during infections by Cladosporium fulvum.-Planta 213: 241-249, 2001. Go to original source...
  24. Van Cauwenberghe, O.R., Shelp, B.J.: Biochemical characterization of partially purified GABA: pyruvate transaminase from Nicotiana tabacum.-Phytochemistry 52: 575-581, 1999. Go to original source...