Biologia plantarum 52:365-369, 2008 | DOI: 10.1007/s10535-008-0076-6

Agrobacterium-mediated transformation in Citrullus lanatus

M.-A. Cho1, C.-Y. Moon3, J.-R. Liu2, P.-S. Choi4,*
1 Eugentech, Inc./Bioventure, Taejon, Korea
2 Plant Cell Biotechnology Laboratory, KRIBB, Taejon, Korea
3 Department of Oriental Plant Resource, Kyung Woon University, Gumi, Korea
4 Department of Medicinal Plant Resources, Nambu University, Gwangju, Korea

Agrobacterium tumefaciens-mediated transformation was used to produce transgenic watermelon. Cotyledonary explants of Citrullus lanatus Thumb (cv. Daesan) were co-cultivated with Agrobacterium strains (LBA4404, GV3101, EHA101) containing pPTN289 carrying with bar gene and pPTN290 carrying with nptII gene, respectively. There was a significant difference in the transformation frequency between bacteria strains and selective markers. The EHA101/pPTN289 showed higher transformation frequency (1.16 %) than GV3101/pPTN289 (0.33 %) and LBA4404/pPTN289 or /pPTN290 (0 %). The shoots obtained (633 and 57 lines) showed some resistance to glufosinate and paromomycin, respectively. Of them, the β-glucuronidase positive response and PCR products amplified by bar and nptII specific primers showed at least 21 plants resistant to glufosinate and at least 6 plants to paromomycin. Southern blot analysis revealed that the bar gene integrated into genome of transgenic watermelon. Acclimated transgenic watermelons were successfully transplanted in the greenhouse and showed no phenotypic variation.

Keywords: Agrobacterium strains; β-glucuronidase; glufosinate; paromomycin; transgenic watermelon
Subjects: Agrobacterium tumefaciens; auxins; Citrullus lanatus; glucuronidase, GUS histochemical assay; in vitro culture, regeneration; nutrient medium, Murashige and Skoog (MS); polymerase chain reaction (PCR); transgenic plants; watermelon

Received: April 10, 2006; Accepted: May 21, 2007; Published: June 1, 2008Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Cho, M.-A., Moon, C.-Y., Liu, J.-R., & Choi, P.-S. (2008). Agrobacterium-mediated transformation in Citrullus lanatus. Biologia plantarum52(2), 365-369. doi: 10.1007/s10535-008-0076-6.
Download citation

References

  1. An, G.: Binary Ti vectors for plant transformation and promoter analysis.-Methods Enzymol. 153: 292-305, 1987 Go to original source...
  2. Boyhan, G.J., Norton, D., Jacobsen, B.J., Abrahams, B.R.: Evaluation of watermelon and related germplasm for resistance to zucchini yellow mosaic virus.-Plant Dis. 76: 251-252, 1992. Go to original source...
  3. Cho, M.A., Song, Y.M., Park, Y.O., Ko, S.M., Min, S.R., Liu, J.R., Choi, P.S.: The use of glufosinate as a selective marker for the transformation of cucumber (Cucumis sativus L.).-Kor. J. Plant Biotechnol. 32: 161-165, 2005a.
  4. Cho, M.A., Park, Y.O., Kim, J.S., Park, K.J., Min, H.K., Liu, J.R., Clemente, T., Choi, P.S.: Development of transgenic maize (Zea may L.) using Agrobacterium tumefaciens-mediated transformation.-Kor. J. Plant Biotechnol. 32: 91-95, 2005b.
  5. Choi, P.S., Soh, W.Y., Kim, Y.S., Yoo, O.J., Liu, J.R.: Genetic transformation and plant regeneration of watermelon using Agrobacterium tumefaciens.-Plant Cell Rep. 13: 344-348, 1994. Go to original source...
  6. Compton, M.E., Gray, D.J.: Shoot organogenesis and plant regeneration from cotyledons of diploid, triploid and tetraploid watermelon.-J. amer. Soc. hort. Sci. 118: 151-157, 1993. Go to original source...
  7. Compton, M.E., Gray, D.J., Gaba, V.P.: Use of tissue culture and biotechnology for the genetic improvement of watermelon.-Plant Cell Tissue Organ Cult. 77: 231-243, 2004. Go to original source...
  8. Dellaporta, S.L., Wood, J., Hicks, J.B.: Maize DNA miniprep.-In: Malmberg, R., Messing, J., Sussex, I. (ed.): Molecular Biology of Plants: A laboratory Course Manual. Pp. 36-37. Cold Spring Harbor Press, New York 1985.
  9. Ellul, P., Rios, G., Atares, A., Roig, L.A., Serrano, R.: The expression of the Saccharomyces cerevisiae HAL1 gene increases salt tolerance in transgenic watermelon (Citrullus lanatus Thunb.) Matsum. & Nakai.-Theor. appl. Genet. 107: 462-469, 2003. Go to original source...
  10. Gaba, V., Zelcer, A., Gal-On, A.: Cucurbit biotechnology-the importance of virus resistance.-In Vitro cell. dev. Biol. Plant 40: 346-358, 2004. Go to original source...
  11. Gillaspie, Jr, A.G., Wright, J.M.: Evaluation of Citrullus sp. Germplasm for resistance to watermelon mosaic virus 2.-Plant Dis. 77: 352-354, 1993. Go to original source...
  12. Gaster, H.: The potential role of lycopene for human health.-J. Amer. Coll. Nutr. 16: 109-126, 1997 Go to original source...
  13. Han, J,S., Kim, C.K., Park, S.H., Hirschi, K.D.: Agrobacterium mediated transformation of bottle gourd (Lagenaria siceraria Standl.).-Plant Cell Rep. 23: 692-698, 2005. Go to original source...
  14. Hood, E.E., Gelvin, S.B., Melchers, L.S., Hoekema, A.: New Agrobacterium helper plasmids for gene transfer to plants.-Transgenic Res. 2; 208-218, 1993. Go to original source...
  15. Howe, A., Shirley, S., Dweikat, I.: Rapid and reproducible Agrobacterium-mediated transformation of sorghum.-Plant Cell Rep. 25: 784-791, 2005.
  16. Jefferson, R.A., Kavanagh, T.A., Bevan, M.W.: GUS fusion: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants.-EMBO J. 6: 3901-3907, 1987. Go to original source...
  17. Keller, G., Spatola, L., McCabe, D., Martinell, B., Swain, W., John, M.E.: Transgenic cotton resistant to herbicide bialaphos.-Transgenic Res. 6: 385-392, 1997. Go to original source...
  18. Koncz, C., Schell, J.: The promoter of T-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector.-Mol. gen. Genet. 204: 383-396, 1986. Go to original source...
  19. Mohapatra, U., McMabe, M.S., Power, J.B., Schepers, F., Van der Arend, A., Davey, M.R.: Expression of the bar gene confers herbicide resistance in transgenic lettuce.-Transgenic Res. 8: 33-44, 1999. Go to original source...
  20. Murashige, T., Skoog, F.: A revised medium for rapid growth and bioassay with tobacco tissue cultures.-Physiol. Plant 15: 473-497, 1962. Go to original source...
  21. Ooms, G., Hooykaas, J.J., Moolenaar, G., Schilperoort, R.A.: Crown gall plant tumors of abnormal morphology, induced by Agrobacterium tumefaciens carrying mutated octopine Ti plasmids; analysis of T-DNA functions.-Gene 14: 33-50, 1981. Go to original source...
  22. Rane, K.K., Latin, R.X.: Bacterial fruit blotch of watermelon: association of the pathogen with seed.-Plant Dis. 76: 509-512, 1992. Go to original source...
  23. Reed, J., Privalle, L., Powell, M.L., Meghji, M., Dawson, J., Dunder, E., Suttie, J., Wenck, A., Launis, K., Kramer, C., Chang, Y.F., Hansen, G., Wright, M., Chang, Y.F.: Phosphomannose isomerase: an efficient selectable marker for plant transformation.-In vitro cell. dev. Biol. Plant 37: 127-132, 2001.
  24. Tricoli, D.M., Carney, K.J., Russell, P.F., Quemada, H.D., Mcmaster, R.J., Reynolds, J.F., Deng, R.Z.: Transgenic plants expressing DNA constructs containing a plurality of genes to impact virus resistance.-United States Patent No. 6,337,431, 2002.
  25. Thompson, C.J., Movva, N.R., Tichard, R., Crameri, R., Davies, J.E., Lauwereys, M.: Characterization of the herbicide-resistance gene bar from Streptomyces hygroscopicus.-EMBO J. 6: 2519-2523, 1987. Go to original source...
  26. Zhang, Z., Xing, A., Staswick, P., Clemente, T.E.: The use of glufosinate as a selective agent in Agrobacterium-mediated transformation of soybean.-Plant Cell Tissue Organ Cult. 56: 37-46, 1999. Go to original source...