Biologia plantarum 2018, 62:521-533 | DOI: 10.1007/s10535-018-0797-0

Identification and expression pattern analysis of the glucosinolate biosynthetic gene BoCYP83B1 from broccoli

R. Xu1, W. W. Kong1, Y. F. Peng1, K. X. Zhang1, R. Li1, J. Li1,*
1 College of Life Sciences, Northeast Agricultural University, Harbin, P.R. China

Glucosinolates are a branch of amino acid-derived metabolites, which are specifically found in Brassicales. In Arabidopsis, tryptophan derived indolic glucosinolates are required for plant defense against a wide range of pathogens and herbivores due to their strong antimicrobial activity and potential signaling function. An important enzyme in indolic glucosinolate biosynthesis pathway is CYP83B1, which oxidizes indole-3-acetaldoxime, a precursor of indole-3-acetic acid (IAA). In this study, we reported isolation and expression characterization of a CYP83B1 gene from Brassica oleracea L. var. italica Plenck, which we termed BoCYP83B1. Overexpression of BoCYP83B1 in Arabidopsis resulted in an altered glucosinolate profile and early flowering phenotype. By expressing the reporter gene β-glucuronidase under the control of the BoCYP83B1 promoter in Arabidopsis, we analyzed the spatial expression pattern of BoCYP83B1 under normal growth conditions as well as in response to several hormones and stresses. The BoCYP83B1 was primarily expressed in vascular tissue through the almost whole plant. It was strongly induced by methyl jasmonate, 1-amino-1-cyclopropanecarboxylic acid, salicylic acid (SA), gibberellin, and IAA, suggesting its involvement in complex signaling pathways. Mannitol, NaCl, UV, and Flagelin 22 significantly up-regulated BoCYP83B1 expression, indicating its possible role in stress response. Interestingly, the response of BoCYP83B1 to SA and NaCl showed tissue specificity. Thus, BoCYP83B1 might have different functions in different tissues.

Keywords: ethylene; gibberellins; indole-3-acetic acid; jasmonates; mannitol; salinity; UV radiation
Subjects: glucosinolate biosynthesis; gene expression; phylogenetic tree; ethylene; gibberellins; auxins; jasmonates; abscisic acid; salinity; mannitol; UV radiation
Species: Brassica oleracea; Arabidopsis thaliana

Received: November 15, 2017; Revised: January 24, 2018; Accepted: January 26, 2018; Published: September 1, 2018Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Xu, R., Kong, W.W., Peng, Y.F., Zhang, K.X., Li, R., & Li, J. (2018). Identification and expression pattern analysis of the glucosinolate biosynthetic gene BoCYP83B1 from broccoli. Biologia plantarum62(3), 521-533. doi: 10.1007/s10535-018-0797-0.
Download citation

Supplementary files

Download filebpl-201803-0013_S1.pdf

File size: 5.5 MB

References

  1. Agerbirk, N., Olsen, C.E.: Glucosinolate structures in evolution. - Phytochemistry 77: 16-45, 2012. Go to original source...
  2. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local alignment search tool. - J. mol. Biol. 215: 403-410, 1990. Go to original source...
  3. Alvarez, S., He, Y., Chen, S.: Comparative investigations of the glucosinolate-myrosinase system in Arabidopsis suspension cells and hypocotyls. - Plant Cell Physiol. 49: 324-333, 2008. Go to original source...
  4. Andersson, M.X., Nilsson, A.K., Johansson, O.N., Boztas, G., Adolfsson, L.E., Pinosa, F., Petit, C.G., Aronsson, H., Mackey, D., Tor, M., Hamberg, M., Ellerstrom, M.: Involvement of the electrophilic isothiocyanate sulforaphane in Arabidopsis local defense responses. - Plant Physiol. 167: 251-261, 2015. Go to original source...
  5. Ares, A.M., Nozal, M.J., Bernal, J.: Extraction, chemical characterization and biological activity determination of broccoli health promoting compounds. - J. Chromatogr. A 1313: 78-95, 2013.
  6. Bak, S., Feyereisen, R.: The involvement of two p450 enzymes, CYP83B1 and CYP83A1, in auxin homeostasis and glucosinolate biosynthesis. - Plant Physiol. 127: 108-118, 2001. Go to original source...
  7. Bak, S., Tax, F.E., Feldmann, K.A., Galbraith, D.W., Feyereisen, R.: CYP83B1, a cytochrome P450 at the metabolic branch point in auxin and indole glucosinolate biosynthesis in Arabidopsis. - Plant Cell 13: 101-111, 2001. Go to original source...
  8. Barlier, I., Kowalczyk, M., Marchant, A., Ljung, K., Bhalerao, R., Bennett, M., Sandberg, G., Bellini, C.: The SUR2 gene of Arabidopsis thaliana encodes the cytochrome P450 CYP83B1, a modulator of auxin homeostasis. - Proc. nat. Acad. Sci. USA 97: 14819-14824, 2000. Go to original source...
  9. Bednarek, P., Osbourn, A.: Plant-microbe interactions: chemical diversity in plant defense. - Science 324: 746-748, 2009. Go to original source...
  10. Bhuria, M., Goel, P., Kumar, S., Singh, A.K.: The promoter of AtUSP is co-regulated by phytohormones and abiotic stresses in Arabidopsis thaliana. - Front. Plant Sci. 7: 1957, 2016.
  11. Biasini, M., Bienert, S., Waterhouse, A., Arnold, K., Studer, G., Schmidt, T., Kiefer, F., Cassarino, T.G., Bertoni, M., Bordoli, L., Schwede, T.: SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. - Nucl. Acids Res. 42: W252-W258, 2014. Go to original source...
  12. Blom, N., Gammeltoft, S., Brunak, S.: Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. - J. mol. Biol. 294: 1351-1362, 1999. Go to original source...
  13. Chen, Y.J., Yu, P., Luo, J.C., Jiang, Y.: Secreted protein prediction system combining CJ-SPHMM, TMHMM, and PSORT. - Mammalian Genome 14: 859-865, 2003. Go to original source...
  14. Clay, N.K., Adio, A.M., Denoux, C., Jander, G., Ausubel, F.M.: Glucosinolate metabolites required for an Arabidopsis innate immune response. - Science 323: 95-101, 2009. Go to original source...
  15. Clough, S.J., Bent, A.F.: Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. - Plant J. 16: 735-743, 1998. Go to original source...
  16. Delarue, M., Prinsen, E., Onckelen, H.V., Caboche, M., Bellini, C.: Sur2 mutations of Arabidopsis thaliana define a new locus involved in the control of auxin homeostasis. - Plant J. 14: 603-611, 1998. Go to original source...
  17. Fahey, J.W., Haristoy, X., Dolan, P.M., Kensler, T.W., Scholtus, I., Stephenson, K.K., Talalay, P., Lozniewski, A.: Sulforaphane inhibits extracellular, intracellular, and antibiotic-resistant strains of Helicobacter pylori and prevents benzo a pyrene-induced stomach tumors. - Proc. nat. Acad. Sci. USA 99: 7610-7615, 2002. Go to original source...
  18. Fahey, J.W., Zhang, Y., Talalay, P.: Broccoli sprouts: an exceptionally rich source of inducers of enzymes that protect against chemical carcinogens. - Proc. nat. Acad. Sci. USA 94: 10367-10372, 1997. Go to original source...
  19. Frerigmann, H., Pislewska-Bednarek, M., Sanchez-Vallet, A., Molina, A., Glawischnig, E., Gigolashvili, T., Bednarek, P.: Regulation of pathogen-triggered tryptophan metabolism in Arabidopsis thaliana by MYB transcription factors and indole glucosinolate conversion products. - Mol. Plant 9: 682-695, 2016. Go to original source...
  20. Gasteiger, E., Gattiker, A., Hoogland, C., Ivanyi, I., Appel, R.D., Bairoch, A.: ExPASy: the proteomics server for in-depth protein knowledge and analysis. - Nucl. Acids Res. 31: 3784-3788, 2003. Go to original source...
  21. Geourjon, C., Deleage, G.: SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. - C.A.B.I.O.S. 11: 681-684, 1995. Go to original source...
  22. Geu-Flores, F., Nielsen, M.T., Nafisi, M., Moldrup, M.E., Olsen, C.E., Motawia, M.S., Halkier, B.A.: Glucosinolate engineering identifies gamma-glutamyl peptidase. - Nat. chem. Biol. 5: 575-577, 2009. Go to original source...
  23. Grubb, C.D., Zipp, B.J., Ludwig-Muller, J., Masuno, M.N., Molinski, T.F., Abel, S.: Arabidopsis glucosyltransferase UGT74B1 functions in glucosinolate biosynthesis and auxin homeostasis. - Plant J. 40: 893-908, 2004. Go to original source...
  24. Halkier, B.A.: General introduction to glucosinolates. - In: Kopriva, S. (ed.): Advances in Botanical Research. Vol. 80. Pp.1-14. Elsevier, London 2016. Go to original source...
  25. Halkier, B.A., Du, L.: The biosynthesis of glucosinolates. - Trends Plant Sci. 2: 425-431, 1997. Go to original source...
  26. Halkier, B.A., Gershenzon, J.: Biology and biochemistry of glucosinolates.-Annu. Rev. Plant Biol. 57: 303-333, 2006. Go to original source...
  27. Hansen, B.G., Kliebenstein, D.J., Halkier, B.A.: Identification of a flavin-monooxygenase as the S-oxygenating enzyme in aliphatic glucosinolate biosynthesis in Arabidopsis. - Plant J. 50: 902-910, 2007. Go to original source...
  28. Hansen, C.H., Du, L., Naur, P., Olsen, C.E., Axelsen, K.B., Hick, A.J., Pickett, J.A., Halkier, B.A.: CYP83B1 is the oxime-metabolizing enzyme in the glucosinolate pathway in Arabidopsis. - J. biol. Chem. 276: 24790-24796, 2001. Go to original source...
  29. Hemm, M.R., Ruegger, M.O., Chapple, C.: The Arabidopsis ref2 mutant is defective in the gene encoding CYP83A1 and shows both phenylpropanoid and glucosinolate phenotypes. - Plant Cell 15: 179-194, 2003. Go to original source...
  30. Hoecker, U., Toledo-Ortiz, G., Bender, J., Quail, P.H.: The photomorphogenesis-related mutant red1 is defective in CYP83B1, a red light-induced gene encoding a cytochrome P450 required for normal auxin homeostasis. - Planta 219: 195-200, 2004. Go to original source...
  31. Hull, A.K., Vij, R., Celenza, J.L.: Arabidopsis cytochrome P450s that catalyze the first step of tryptophan-dependent indole-3-acetic acid biosynthesis. - Proc. nat. Acad. Sci. USA 97: 2379-2384, 2000. Go to original source...
  32. Jefferson, R.A., Kavanagh, T.A., Bevan, M.W.: GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. - EMBO J. 6: 3901-3907, 1987. Go to original source...
  33. Johnson, M., Zaretskaya, I., Raytselis, Y., Merezhuk, Y., McGinnis, S., Madden, T.L.: NCBIBLAST: a better web interface. - Nucl. Acids Res. 36: W5-W9, 2008. Go to original source...
  34. Latte, K.P., Appel, K.-E., Lampen, A.: Health benefits and possible risks of broccoli - an overview. - Food Chem. Toxicol. 49: 3287-3309, 2011. Go to original source...
  35. Madsen, S.R., Olsen, C.E., Nour-Eldin, H.H., Halkier, B.A.: Elucidating the role of transport processes in leaf glucosinolate distribution. - Plant Physiol. 166: 1450-1462, 2014. Go to original source...
  36. Maharjan, P.M., Dilkes, B.P., Fujioka, S., Pencik, A., Ljung, K., Burow, M., Halkier, B.A., Choe, S.: Arabidopsis gulliver1/superroot2-7 identifies a metabolic basis for auxin and brassinosteroid synergy. - Plant J. 80: 797-808, 2014. Go to original source...
  37. Mewis, I., Appel, H.M., Hom, A., Raina, R., Schultz, J.C.: Major signaling pathways modulate Arabidopsis glucosinolate accumulation and response to both phloem-feeding and chewing insects. - Plant Physiol. 138: 1149-1162, 2005. Go to original source...
  38. Mewis, I., Khan, M.A.M., Glawischnig, E., Schreiner, M., Ulrichs, C.: Water stress and aphid feeding differentially influence metabolite composition in Arabidopsis thaliana (L.). - PLoS ONE 7: e48661, 2012. Go to original source...
  39. Mewis, I., Tokuhisa, J.G., Schultz, J.C., Appel, H.M., Ulrichs, C., Gershenzon, J.: Gene expression and glucosinolate accumulation in Arabidopsis thaliana in response to generalist and specialist herbivores of different feeding guilds and the role of defense signaling pathways. - Phytochemistry 67: 2450-2462, 2006. Go to original source...
  40. Mikkelsen, M.D., Hansen, C.H., Wittstock, U., Halkier, B.A.: Cytochrome P450 CYP79B2 from Arabidopsis catalyzes the conversion of tryptophan to indole-3-acetaldoxime, a precursor of indole glucosinolates and indole-3-acetic acid. - J. biol. Chem. 275: 33712-33717, 2000. Go to original source...
  41. Mikkelsen, M.D., Naur, P., Halkier, B.A.: Arabidopsis mutants in the C-S lyase of glucosinolate biosynthesis establish a critical role for indole-3-acetaldoxime in auxin homeostasis. - Plant J. 37: 770-777, 2004. Go to original source...
  42. Mikkelsen, M.D., Petersen, B.L., Glawischnig, E., Jensen, A.B., Andreasson, E., Halkier, B.A.: Modulation of CYP79 genes and glucosinolate profiles in Arabidopsis by defense signaling pathways. - Plant Physiol. 131: 298-308, 2003. Go to original source...
  43. Mizutani, M., Ward, E., Ohta, D.: Cytochrome P450 superfamily in Arabidopsis thaliana: isolation of cDNAs, differential expression, and RFLP mapping of multiple cytochromes P450. - Plant mol. Biol 37: 39-52, 1998. Go to original source...
  44. Moldrup, M.E., Salomonsen, B., Geu-Flores, F., Olsen, C.E., Halkier, B.A.: De novo genetic engineering of the camalexin biosynthetic pathway. - J. Biotechnol. 167: 296-301, 2013. Go to original source...
  45. Morant, M., Ekstrom, C., Ulvskov, P., Kristensen, C., Rudemo, M., Olsen, C.E., Hansen, J., Jorgensen, K., Jorgensen, B., Moller, B.L., Bak, S.: Metabolomic, transcriptional, hormonal, and signaling cross-talk in superroot2. - Mol. Plant 3: 192-211, 2010. Go to original source...
  46. Nafisi, M., Goregaoker, S., Botanga, C.J., Glawischnig, E., Olsen, C.E., Halkier, B.A., Glazebrook, J.: Arabidopsis cytochrome P450 monooxygenase 71A13 catalyzes the conversion of indole-3-acetaldoxime in camalexin synthesis. - Plant Cell 19: 2039-2052, 2007. Go to original source...
  47. Nafisi, M., Sønderby, I.E., Hansen, B.G., Geu-Flores, F., Nour-Eldin, H.H., Nørholm, M.H.H., Jensen, N.B., Li, J., Halkier, B.A.: Cytochromes P450 in the biosynthesis of glucosinolates and indole alkaloids. - Phytochem. Rev. 5: 331-346, 2006. Go to original source...
  48. Naur, P., Petersen, B.L., Mikkelsen, M.D., Bak, S., Rasmussen, H., Olsen, C.E., Halkier, B.A.: CYP83A1 and CYP83B1, two nonredundant cytochrome P450 enzymes metabolizing oximes in the biosynthesis of glucosinolates in Arabidopsis. - Plant Physiol. 133: 63-72, 2003. Go to original source...
  49. Nour-Eldin, H.H., Hansen, B.G., Norholm, M.H.H., Jensen, J.K., Halkier, B.A.: Advancing uracil-excision based cloning towards an ideal technique for cloning PCR fragments. - Nucl. Acids Res. 34: e122, 2006. Go to original source...
  50. Pang, Q.Y., Chen, S.X., Li, L.X., Yan, X.F.: Characterization of glucosinolate-myrosinase system in developing salt cress Thellungiella halophila. - Physiol. Plant. 136: 1-9, 2009. Go to original source...
  51. Pfalz, M., Vogel, H., Kroymann, J.: The gene controlling the Indole Glucosinolate Modifier1 quantitative trait locus alters indole glucosinolate structures and aphid resistance in Arabidopsis. - Plant Cell 21: 985-999, 2009. Go to original source...
  52. Piotrowski, M., Schemenewitz, A., Lopukhina, A., Muller, A., Janowitz, T., Weiler, E.W., Oecking, C.: Desulfoglucosinolate sulfotransferases from Arabidopsis thaliana catalyze the final step in the biosynthesis of the glucosinolate core structure. - J. biol. Chem. 279: 50717-50725, 2004. Go to original source...
  53. Reymond, P., Weber, H., Damond, M., Farmer, E.E.: Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis. - Plant Cell 12: 707-720, 2000. Go to original source...
  54. Riach, A.C., Perera, M.V.L., Florance, H.V., Penfield, S.D., Hill, J.K.: Analysis of plant leaf metabolites reveals no common response to insect herbivory by Pieris rapae in three related host-plant species. - J. exp. Bot. 66: 2547-2556, 2015. Go to original source...
  55. Rombauts, S., Dehais, P., Van Montagu, M., Rouze, P.: PlantCARE, a plant cis-acting regulatory element database. - Nucl. Acids Res. 27: 295-296, 1999. Go to original source...
  56. Rose, P., Faulkner, K., Williamson, G., Mithen, R.: 7-Methyl-sulfinylheptyl and 8-methylsulfinyloctyl isothiocyanates from watercress are potent inducers of phase II enzymes. - Carcinogenesis 21: 1983-1988, 2000.
  57. Schultz, J., Milpetz, F., Bork, P., Ponting, C.P.: SMART, a simple modular architecture research tool: identification of signaling domains. - Proc. nat. Acad. Sci. USA 95: 5857-5864, 1998. Go to original source...
  58. Smolen, G., Bender, J.: Arabidopsis cytochrome P450 cyp83B1 mutations activate the tryptophan biosynthetic pathway. - Genetics 160: 323-332, 2002.
  59. Stotz, H.U., Sawada, Y., Shimada, Y., Hirai, M.Y., Sasaki, E., Krischke, M., Brown, P.D., Saito, K., Kamiya, Y.: Role of camalexin, indole glucosinolates, and side chain modification of glucosinolate-derived isothiocyanates in defense of Arabidopsis against Sclerotinia sclerotiorum. - Plant J. 67: 81-93, 2011. Go to original source...
  60. Textor, S., Gershenzon, J.: Herbivore induction of the glucosinolate-myrosinase defense system: major trends, biochemical bases and ecological significance. - Phytochem. Rev. 8: 149-170, 2009. Go to original source...
  61. Warwick, S.I., Francis, A., Al-Shehbaz, I.A.: Brassicaceae: species checklist and database on CD-Rom. - Plant Syst. E Vol. 259: 249-258, 2006. Go to original source...
  62. Weiler, E.W., Jourdan, P.S., Conrad, W.: Levels of indole-3-acetic acid in intact and decapitated coleoptiles as determined by a specific and highly sensitive solid-phase enzyme immunoassay. - Planta 153: 561-571, 1981. Go to original source...
  63. Yang, Y.M., Xu, C.N., Wang, B.M., Jia, J.Z.: Effects of plant growth regulators on secondary wall thickening of cotton fibres. - Plant Growth Regul. 35: 233-237, 2001.
  64. Zang, Y.X., Lim, M.H., Park, B.S., Hong, S.B., Kim, D.H.: Metabolic engineering of indole glucosinolates in Chinese cabbage plants by expression of Arabidopsis CYP79B2, CYP79B3, and CYP83B1. - Mol. Cells 25: 231-241, 2008.
  65. Zhang, Z.L., Ji, R.H., Li, H.Y., Zhao, T., Liu, J., Lin, C.T., Liu, B.: CONSTANS-LIKE 7 (COL7) is involved in phytochrome B (phyB)-mediated light-quality regulation of auxin homeostasis. - Mol. Plant 7: 1429-1440, 2014. Go to original source...
  66. Zhang, Z.Y., Ober, J.A., Kliebenstein, D.J.: The gene controlling the quantitative trait locus EPITHIOSPECIFIER MODIFIER1 alters glucosinolate hydrolysis and insect resistance in Arabidopsis. - Plant Cell 18: 1524-1536, 2006. Go to original source...