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Abstract. LetM be a given nonempty set of positive integers and S any set of nonnegative
integers. Let δ(S) denote the upper asymptotic density of S. We consider the problem of
finding

µ(M) := sup
S

δ(S),

where the supremum is taken over all sets S satisfying that for each a, b ∈ S, a− b /∈ M. In
this paper we discuss the values and bounds of µ(M) where M = {a, b, a+ nb} for all even
integers and for all sufficiently large odd integers n with a < b and gcd(a, b) = 1.
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1. Introduction

For any set S of nonnegative integers, we denote by S(n) the number of elements

x ∈ S such that x 6 n. As usual, we define the upper and lower asymptotic

densities of S (denoted by δ(S) and δ(S), respectively) by δ(S) = lim sup
n→∞

S(n)/n

and δ(S) = lim inf
n→∞

S(n)/n. If δ(S) = δ(S), we denote the common value by δ(S),

and say that S has density δ(S). Now suppose that M is a given nonempty set

of positive integers. Motzkin [7] asks to determine the maximal upper asymptotic

density defined by

µ(M) := sup
S

δ(S),

where the supremum is taken over all sets S satisfying that for each a, b ∈ S, a− b /∈

M. Such sets S are called M -sets in the literature.

Initial work on this problem is due to Cantor and Gordon [1], in which they show

the existence of µ(M) for each M and also determine µ(M) when M has one or two
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elements. They prove that if |M | = 1, then µ(M) = 1/2 and if M = {a, b} with

gcd(a, b) = 1, then µ(M) = ⌊ 1
2 (a+ b)⌋/(a+ b). By a result of Cantor and Gordon

it is sufficient to consider the problem only for those sets M whose elements are

relatively prime. Furthermore, they give the following lower bound for µ(M).

Lemma 1.1. Let M = {m1,m2,m3, . . .} and let k, m be positive integers such

that gcd(k,m) = 1. Then

µ(M) > sup
(k,m)=1

1

m
min
i

|kmi|m,

where |x|m denotes the absolute value of the absolutely least remainder of x mod m.

The following remark by Haralambis [4] gives three equivalent definitions of the

right hand side expression of the inequality in Lemma 1.1. Throughout this paper

we use the third definition, i.e., d3(M).

R em a r k 1.1. Let M = {m1,m2, . . . ,mn}, and

d1(M) = sup
x∈(0,1)

min
i

‖xmi‖,

d2(M) = sup
(k,m)=1

1

m
min
i

|kmi|m,

d3(M) = max
m=mj+ml

16k6m/2

1

m
min |kmi|m,

where for x ∈ R, ‖x‖ denotes the distance of x from the nearest integer and mj , ml

represent distinct elements of M . Then d1(M) = d2(M) = d3(M), and we denote

this common value by d(M).

Thus we have µ(M) > d(M). At this stage we mention the very first conjecture

on this problem by Haralambis [4].

Conjecture. If |M | = 3, then µ(M) = d(M).

The above conjecture holds true if |M | 6 2 and is false if |M | = 4. The proofs and

counter examples may be found in [4].

The following lemma in [4] gives an upper bound for µ(M).

Lemma 1.2. Let M be a given set of positive integers, α a real number in the

interval [0, 1], and suppose that for any M -set S with 0 ∈ S there exists a positive

integer k (possibly dependent on S) such that S(k) 6 (k + 1)α. Then µ(M) 6 α.
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Haralambis [4] gives some general estimates and expressions for µ(M) for most

members of the families {1, a, b} and {1, 2, a, b}. Gupta and Tripathi [3] give the

value of µ(M) whenM is finite and the elements ofM are in arithmetic progression.

Liu and Zhu [5] compute the values of µ(M) for M = {a, 2a, . . . , (m− 1)a, b}, M =

{a, b, a+b}, and give bounds of µ(M) forM = {a, b, b−a, b+a} using graph theoretic

techniques. They further compute µ(M) forM = [1, a]∪[b,m+1], where a < b in [6].

The present author in joint works with Tripathi ([8], [9], [10]) discusses the problem

for the family M = {a, b, c} with a < b, where c = nb or na or n(a + b), and for

those families M which are related to finite arithmetic progressions. In the present

paper we discuss the problem of finding µ(M) for M = {a, b, a + nb} for all even

integers n and for all sufficiently large odd integers n with a < b and gcd(a, b) = 1.

In Sections 2, 3 and 4, we give bounds or the exact values of µ(M).

2. Numbers a and b are of opposite parity and

n > b − a+ 2 is an odd integer

In this section we study the family M = {a, b, a+ nb}, where a < b, gcd(a, b) =

1 and n is a sufficiently large odd integer. Mainly, d(M) is calculated, which is

a lower bound of µ(M) and as we are working in the case where |M | = 3, d(M) is

conjecturally equal to µ(M).

Lemma 2.1. For each r, s > 0, set

Ar = b− a+ {2r(a+ b) + 2t : 1 6 t 6 a},

Bs = b− a+ {2(s+ 1)a+ 2sb+ 2t : 1 6 t 6 b}.

The collection {A0, A1, . . . , B0, B1, . . .} partitions 2N− 1 \ {1, 3, . . . , b− a}.

P r o o f. Clearly, |Ar | = a and |Bs| = b for each r, s > 0. Also, we have the

recurrences Ar+1 = Ar + 2(a + b) and Bs+1 = Bs + 2(a + b). Notice that {A0, B0}

partitions the set [b− a+ 2, b− a+ 2(a+ b)] ∩ (2N− 1 \ {1, 3, . . . , b− a}). Thus we

have the lemma. �

Theorem 2.1. Let M = {a, b, a+ nb}, where a < b, gcd(a, b) = 1, a and b are of

opposite parity and n > b− a+2 is an odd integer. For each r, s > 0, let Ar and Bs

be as given in Lemma 2.1. Then

d(M) =















m− ((2r + 1)b+ 1)

2m
if n ∈ Ar, where m = a+ (n+ 1)b;

m− ((2s+ 1)b+ 2t)

2m
if n ∈ Bs, where m = 2a+ nb.
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P r o o f. Case I (n ∈ Ar). To calculate d(M) we use d3(M). According to the

definition of d3(M), the possible values of m may be a+(n+1)b, 2a+nb, and a+ b.

⊲ (1) (m = a + (n + 1)b). Since gcd(b,m) = 1, we can choose an integer x such

that

bx ≡
m− ((2r + 1)b+ 1)

2
(mod m).

We have

ax ≡ −(n+ 1)bx ≡ − (n+ 1)
m− ((2r + 1)b+ 1)

2

≡
(n+ 1)((2r + 1)b+ 1)

2
(mod m).

Since (n+1)((2r+1)b+1) = (2r+1)(n+1)b+n+1 = (2r+1)m+(2r+1)b+1−2(a−t),

therefore,

ax ≡
m+ (2r + 1)b+ 1− 2(a− t)

2
≡ −

m− ((2r + 1)b+ 1) + 2(a− t)

2
(mod m).

We also have that (a+ nb)x ≡ −bx (mod m). Thus

min{|ax|m, |bx|m, |(a+ nb)x|m} =
m− ((2r + 1)b+ 1)

2
.

We now show that for all y such that 1 6 y 6 m/2 and y 6= x,

min{|ay|m, |by|m, |(a+ nb)y|m} 6
m− ((2r + 1)b+ 1)

2
.

Let l := (2r + 1)b+ 1, and 1 6 y 6 m/2. Suppose for some integer i,

by ≡
m

2
−

l

2
+ i (mod m).

This gives

ay ≡
m

2
+

l

2
− (a− t)− (n+ 1)i (mod m).

If m/2 − l/2 + i modulo m is in [m/2 − l/2,m/2 + l/2], then 0 6 i 6 l. Since we

have that (a + nb)y ≡ −by (mod m), the inequality will be valid if we show that

m/2 + l/2 − (a − t) − (n + 1)i modulo m is in [−(m/2 − l/2),m/2 − l/2] for each

1 6 i 6 l. First, let i = l. In this case, the congruences become

by ≡
m

2
−

l

2
+ l ≡ −

(m

2
−

l

2

)

(mod m),

(a+ nb)y ≡ −by ≡
m

2
−

l

2
(mod m),
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and

ay ≡
m

2
+

l

2
− (a− t)− (n+ 1)l (mod m).

Since (n+ 1)l = (2r + 1)m+ l − 2(a− t),

ay ≡
m

2
−

l

2
+ (a− t) (mod m).

Therefore, we have the inequality in this case. Next, let 1 6 i 6 l − 1. Observe that

{1, 2, . . . , l − 1} ⊆
2r
⋃

p=0

Ip,

where Ip = [pb+((p− 1)a+ t+ l)/(n+ 1), (p+1)b+(pa+ t)/(n+ 1)]. Indeed, since

the largest integer in Ip is (p + 1)b, we only need to verify that (p + 1)b + 1 is in

Ip+1. Notice that (pa+ t+ l)/(n+ 1) 6 1 if and only if pa 6 n + 1 − t − l =

(2r− 1)a+ t 6 2ra, i.e., p 6 2r, which is true. Hence (pa+ t+ l)/(n+ 1) 6 1. This

implies (p + 1)b + (pa+ t+ l)/(n+ 1) 6 (p + 1)b + 1, and hence (p + 1)b + 1 is in

Ip+1 and it is the smallest integer of the interval.

As 1 6 i 6 l − 1, therefore, for some 0 6 p 6 2r, i ∈ Ip, i.e.,

pb+
(p− 1)a+ t+ l

n+ 1
6 i 6 (p+ 1)b+

pa+ t

n+ 1
,

therefore
pm+ l − (a− t)

n+ 1
6 i 6

(p+ 1)m− (a− t)

n+ 1
.

This gives

m

2
+

l

2
− (a− t)− (n+ 1)

(p+ 1)m− (a− t)

n+ 1
6

m

2
+

l

2
− (a− t)− (n+ 1)i

6
m

2
+

l

2
− (a− t)− (n+ 1)

pm+ l − (a− t)

n+ 1
,

so

−(p+ 1)m+
m

2
+

l

2
6

m

2
+

l

2
− (a− t)− (n+ 1)i 6 −pm+

m

2
−

l

2
,

thus

−pm−
(m

2
−

l

2

)

6
m

2
+

l

2
− (a− t)− (n+ 1)i 6 −pm+

m

2
−

l

2
.

Therefore, m/2 + l/2− (a− t)− (n+ 1)i modulo m is in [−(m/2− l/2),m/2− l/2]

for each 1 6 i 6 l − 1. Hence, we have the desired inequality. Thus we see that

max
16y6m/2

(min{|ay|m, |by|m, |(a+ nb)y|m}) =
m− ((2r + 1)b+ 1)

2
.
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⊲ (2) (m = 2a+ nb). Choose an integer x such that

bx ≡
m− ((2r + 1)b+ 2)

2
(mod m).

Such an x exists. For, let d = gcd(b,m), and d 6= 1. Then d | 2a. If b is odd, then as

d | b, d > 3 hence d | a, which shows that gcd(a, b) 6= 1, which is false. Hence, d = 1

and hence the congruence in this case is true. Now, let b be even. Since d | 2a and

a is odd with gcd(a, b) = 1, we have d = 2. Notice that 2 | (m− ((2r + 1)b+ 2))/2,

and hence the congruence is again true. We have

2ax ≡ −nbx ≡ −n
m− ((2r + 1)b+ 2)

2
≡ −

m− (2r + 1)nb− 2n

2
(mod m),

which implies

2ax ≡ −
m− (2r + 1)m+ 2(2r + 1)a− 2n

2
≡ n− (2r + 1)a (mod m).

Now n − (2r + 1)a = b − a + 2r(a + b) + 2t − (2r + 1)a = (2r + 1)b − 2(a − t) =

(2r + 1)b+ 2− 2(a− t+ 1). This gives

2ax ≡ (2r+ 1)b+2− 2(a− t+ 1) ≡ −(m− ((2r+ 1)b+2)+ 2(a− t+1)) (mod m),

therefore,

ax ≡ −
m− ((2r + 1)b+ 2) + 2(a− t+ 1)

2
(mod m).

Since (a+ nb)x ≡ −ax (mod m), we have

min{|ax|m, |bx|m, |(a+ nb)x|m} =
m− ((2r + 1)b+ 2)

2
.

Also, as in (1), it can be shown that for all y such that 1 6 y 6 m/2 and y 6= x,

min{|ay|m, |by|m, |(a+ nb)y|m} 6
m− ((2r + 1)b+ 2)

2
.

Thus we see that

max
16y6m/2

(min{|ay|m, |by|m, |(a+ nb)y|m}) =
m− ((2r + 1)b+ 2)

2
.

⊲ (3) (m = a+ b). Choose an integer x such that

ax ≡ −bx ≡
a+ b− 1

2
(mod m).
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We have

(a+ nb)x ≡ (n− 1)bx ≡
n− 1

2
(mod m).

Thus we see that if n = (2r + 1)(a + b) (which is obtained by taking t = a in Ar)

then

min{|ax|m, |bx|m, |(a+ nb)x|m} =
a+ b− 1

2
.

Moreover, it can be shown that if n = (2r + 1)(a+ b) then

min{|ay|m, |by|m, |(a+ nb)y|m} 6
a+ b− 1

2

for all y; 1 6 y 6 m/2. Thus we see that

max
16y6m/2

(min{|ay|m, |by|m, |(a+ nb)y|m}) =
a+ b− 1

2
.

On the other hand, if n 6= (2r + 1)(a+ b) then it is obvious that

min{|ay|m, |by|m, |(a+ nb)y|m} 6
a+ b− 3

2

for each y. Thus we see that

max
16y6m/2

(min{|ay|m, |by|m, |(a+ nb)y|m}) =
a+ b− 3

2
.

To calculate d(M) we apply the definition d3(M). Let us denote m values in (1),

(2), and (3) by m1, m2, and m3, respectively, i.e., m1 = a+ (n+1)b, m2 = 2a+ nb,

and m3 = a+ b. Then

d(M) = max
(m1 − ((2r + 1)b+ 1)

2m1
,
m2 − ((2r + 1)b+ 2)

2m2
,
a+ b− ε

2m3

)

=
m1 − ((2r + 1)b+ 1)

2m1
.

Here ε = 1 if n = (2r + 1)(a+ b) and ε = 3 if n 6= (2r + 1)(a+ b).

Case II (n ∈ Bs). To calculate d(M) we use d3(M) and hence as in the previous

case we consider the following values of m.

⊲ (1) (m = a+ (n+ 1)b). Choose x such that

bx ≡
m− ((2s+ 1)b+ 1)

2
(mod m).
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We have

ax ≡ −(n+ 1)bx ≡ − (n+ 1)
m− ((2s+ 1)b+ 1)

2

≡
(n+ 1)((2s+ 1)b+ 1)

2
(mod m).

Since (n+1)((2s+1)b+1) = (2s+1)m−(2s+1)a+n+1 = (2s+1)m+(2s+1)b+1+2t,

ax ≡
m+ (2s+ 1)b+ 1 + 2t

2
≡ −

m− ((2s+ 1)b+ 1 + 2t)

2
(mod m).

We also have that (a+ nb)x ≡ −bx (mod m). Thus

min{|ax|m, |bx|m, |(a+ nb)x|m} =
m− ((2s+ 1)b+ 1 + 2t)

2
.

Moreover, it can also be shown as in the Case I that

min{|ay|m, |by|m, |(a+ nb)y|m} 6
m− ((2s+ 1)b+ 1 + 2t)

2

for each y; 1 6 y 6 m/2. Thus we see that

max
16y6m/2

min{|ay|m, |by|m, |(a+ nb)y|m} =
m− ((2s+ 1)b+ 1 + 2t)

2
.

⊲ (2) (m = 2a+ nb). Choose an integer x such that

bx ≡
m− ((2s+ 1)b+ 2)

2
(mod m).

Such an x exists. For, arguments are similar to (2) of Case I. We have

2ax ≡ −nbx ≡ −n
m− ((2s+ 1)b+ 2)

2
≡ −

m− (2s+ 1)nb− 2n

2
(mod m).

This implies

2ax ≡ −
m− (2s+ 1)m+ 2(2s+ 1)a− 2n

2
≡ n− (2s+ 1)a (mod m).

Since n− (2s+ 1)a = b− a+ 2(s+ 1)a+ 2sb+ 2t− (2s+ 1)a = (2s+ 1)b+ 2t,

2ax ≡ (2s+ 1)b+ 2t ≡ −(m− ((2s+ 1)b+ 2t)) (mod m).

Therefore,

ax ≡ −
m− ((2s+ 1)b+ 2t)

2
(mod m).
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Since (a+ nb)x ≡ −ax (mod m), we have

min{|ax|m, |bx|m, |(a+ nb)x|m} =
m− ((2s+ 1)b+ 2t)

2
.

Also, it can be shown that for all y such that 1 6 y 6 m/2 and y 6= x,

min{|ay|m, |by|m, |(a+ nb)y|m} 6
m− ((2s+ 1)b+ 2t)

2
.

Thus we see that

max
16y6m/2

min{|ay|m, |by|m, |(a+ nb)y|m} =
m− ((2s+ 1)b+ 2t)

2
.

⊲ (3) (m = a+ b). Choose an integer x such that

ax ≡ −bx ≡
a+ b− 1

2
(mod m).

We have

(a+ nb)x ≡ (n− 1)bx ≡
n− 1

2
(mod m).

Thus we see that if n = (2s+1)(a+ b) + 2 (which is obtained by taking t = 1 in Bs)

then

min{|ax|m, |bx|m, |(a+ nb)x|m} =
a+ b− 1

2
.

Moreover, it can be shown that if n = (2s+ 1)(a+ b) + 2 then

min{|ay|m, |by|m, |(a+ nb)y|m} 6
a+ b− 1

2

for all y; 1 6 y 6 m/2. Thus we see that

max
16y6m/2

min{|ay|m, |by|m, |(a+ nb)y|m} =
a+ b− 1

2
.

On the other hand, if n 6= (2s+ 1)(a+ b) + 2 then it is obvious that

min{|ay|m, |by|m, |(a+ nb)y|m} 6
a+ b− 3

2

for each y. Thus we see that

max
16y6m/2

min{|ay|m, |by|m, |(a+ nb)y|m} =
a+ b− 3

2
.

61



To calculate d(M) we again apply the definition d3(M). Let us denote m values in

(1), (2), and (3) bym1, m2, andm3, respectively, i.e.,m1 = a+(n+1)b,m2 = 2a+nb,

and m3 = a+ b. Then

d(M) = max
(m1 − ((2s+ 1)b+ 1 + 2t)

2m1
,
m2 − ((2s+ 1)b+ 2t)

2m2
,
a+ b− ε

2m3

)

=
m2 − ((2s+ 1)b+ 2t)

2m2
.

Here ε = 1 if n = (2s + 1)(a + b) + 2 and ε = 3 if n 6= (2s + 1)(a + b) + 2. This

completes the proof of the theorem. �

Corollary 2.1. Let M = {a, b, a + nb}, where a < b, gcd(a, b) = 1, a and b

are of opposite parity and n ∈ {(2r + 1)(a + b), (2s+ 1)(a+ b) + 2}. Then µ(M) =
1
2 (a+ b− 1)/(a+ b).

P r o o f. If n ∈ {(2r + 1)(a + b), (2s + 1)(a + b) + 2} then it follows from the

theorem that µ(M) > d(M) = 1
2 (a+ b− 1)/(a+ b). On the other hand, we always

have µ(M) 6 µ({a, b}) = ⌊ 1
2 (a+ b)⌋/(a+ b). Thus we have the corollary. �

3. Numbers a and b are of opposite parity and n is an even integer

Theorem 3.1. Let M = {a, b, a+ nb}, where a < b, gcd(a, b) = 1, a and b are of

opposite parity and n is even. For each r, s > 0, set

A′

r = {2(ra+ rb + t) : 1 6 t 6 b}, and B′

s = {2(sa+ (s+ 1)b+ t) : 1 6 t 6 a}.

Then

d(M) =















m− 2(rb + t)

2m
if n ∈ A′

r, where m = 2a+ nb;

m− (2(s+ 1)b+ 1)

2m
if n ∈ B′

s, where m = a+ (n+ 1)b.

P r o o f. As in Lemma 2.1 it can be shown that the collection {A′

0, A
′

1, . . . , B
′

0,

B′

1, . . .} partitions the set 2N.

The method of proof of this theorem is similar to that of the previous theorem.

Therefore, we omit the similar calculations here.

Case I (n ∈ A′

r). To calculate d(M) we consider the following three values of m.

⊲ (1) (m = a+ (n+ 1)b). Since gcd(b,m) = 1, we can choose an x such that

bx ≡
m− (2rb + 1)

2
(mod m).
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We have

ax ≡ −(n+ 1)bx ≡ − (n+ 1)
m− (2rb + 1)

2

≡ −
m− (n+ 1)(2rb+ 1)

2
(mod m).

Since (n+ 1)(2rb + 1) = 2rm+ 2rb+ 1 + 2t,

ax ≡ −
m− (2rb + 1 + 2t)

2
(mod m).

We also have that (a+ nb)x ≡ −bx (mod m). Thus

min{|ax|m, |bx|m, |(a+ nb)x|m} =
m− (2rb + 1 + 2t)

2
.

Moreover, for all y such that 1 6 y 6 m/2 and y 6= x,

min{|ay|m, |by|m, |(a+ nb)y|m} 6
m− (2rb+ 1 + 2t)

2
.

Thus we see that

max
16y6m/2

min{|ay|m, |by|m, |(a+ nb)y|m} =
m− (2rb + 1 + 2t)

2
.

⊲ (2) (m = 2a+ nb). Choose an integer x such that

bx ≡
m− 2(rb + 1)

2
(mod m).

We have

2ax ≡ −nbx ≡ −n
m− 2(rb+ 1)

2
≡ n(rb + 1) (mod m).

Since n(rb + 1) = rm+ 2rb + 2t,

2ax ≡ 2rb+ 2t ≡ −(m− 2(rb + t)) (mod m),

therefore,

ax ≡ −
m− 2(rb + t)

2
(mod m).

We also have (a+ nb)x ≡ −ax (mod m). Thus

min{|ax|m, |bx|m, |(a+ nb)x|m} =
m− 2(rb+ t)

2
.
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Also, it can be shown that for all y such that 1 6 y 6 m/2 and y 6= x,

min{|ay|m, |by|m, |(a+ nb)y|m} 6
m− 2(rb + t)

2
.

Thus we see that

max
16y6m/2

min{|ay|m, |by|m, |(a+ nb)y|m} =
m− 2(rb + t)

2
.

⊲ (3) (m = a+ b). Choose an integer x such that

ax ≡ −bx ≡
a+ b− 1

2
(mod m).

We have

(a+ nb)x ≡ (n− 1)bx ≡
n+ a+ b− 1

2
(mod m).

Thus we see that if n = 2r(a+ b) + 2 (which is obtained by taking t = 1 in A′

r) then

min{|ax|m, |bx|m, |(a+ nb)x|m} =
a+ b− 1

2
.

Moreover, it can be shown that if n = 2r(a+ b) + 2 then

min{|ay|m, |by|m, |(a+ nb)y|m} 6
a+ b− 1

2

for all y; 1 6 y 6 m/2. Thus we see that

max
16y6m/2

(min{|ay|m, |by|m, |(a+ nb)y|m}) =
a+ b− 1

2
.

On the other hand, if n 6= 2r(a+ b) + 2 then it is obvious that

min{|ay|m, |by|m, |(a+ nb)y|m} 6
a+ b− 3

2

for each y. Thus we see that

max
16y6m/2

min{|ay|m, |by|m, |(a+ nb)y|m} =
a+ b− 3

2
.

To calculate d(M) we apply the definition d3(M). Let us denote m values in (1),

(2), and (3) by m1,m2, and m3, respectively. Then

d(M) = max
(m1 − (2rb+ 1 + 2t)

2m1
,
m2 − 2(rb + t)

2m2
,
a+ b− ε

2m3

)

=
m2 − 2(rb + t)

2m2
.

Here ε = 1 if n = 2r(a+ b) + 2 and ε = 3 if n 6= 2r(a+ b) + 2.
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Case II (n ∈ B′

s). To calculate d(M) we use d3(M).

⊲ (1) (m = a+ (n+ 1)b). Choose x such that

bx ≡
m− (2(s+ 1)b+ 1)

2
(mod m).

We have

ax ≡ −(n+ 1)bx ≡ − (n+ 1)
m− (2(s+ 1)b+ 1)

2

≡ −
m− (2(s+ 1)b+ 1)(n+ 1)

2
(mod m).

Since (n+1)(2(s+1)b+1) = 2(s+1)(m−a)+n+1 = 2(s+1)m+2(s+1)b+1−2(a−t),

ax ≡ −
m− (2(s+ 1)b+ 1) + 2(a− t)

2
(mod m).

We also have that (a+ nb)x ≡ −bx (mod m). Thus

min{|ax|m, |bx|m, |(a+ nb)x|m} =
m− (2(s+ 1)b+ 1)

2
.

Moreover, it can also be shown that

min{|ay|m, |by|m, |(a+ nb)y|m} 6
m− (2(s+ 1)b+ 1)

2

for each y; 1 6 y 6 m/2. Thus we see that

max
16y6m/2

min{|ay|m, |by|m, |(a+ nb)y|m} =
m− (2(s+ 1)b+ 1)

2
.

⊲ (2) (m = 2a+ nb). Choose an integer x such that

bx ≡
m− 2((s+ 1)b+ 1)

2
(mod m).

We have

2ax ≡ −nbx ≡ −n
m− 2((s+ 1)b+ 1)

2
≡ (s+ 1)nb+ n (mod m).

Since (s+1)nb+n = (s+1)(m−2a)+2sa+2(s+1)b+2t = (s+1)m+2(s+1)b−2(a−t),

2ax ≡ 2(s+ 1)b− 2(a− t) ≡ −(m− 2((s+ 1)b+ 1) + 2(a− t+ 1)) (mod m),
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therefore,

ax ≡ −
m− 2((s+ 1)b+ 1) + 2(a− t+ 1)

2
(mod m).

We also have (a+ nb)x ≡ −ax (mod m). Thus

min{|ax|m, |bx|m, |(a+ nb)x|m} =
m− 2((s+ 1)b+ 1)

2
.

Also, it can be shown that for all y such that 1 6 y 6 m/2 and y 6= x,

min{|ay|m, |by|m, |(a+ nb)y|m} 6
m− 2((s+ 1)b+ 1)

2
.

Thus we see that

max
16y6m/2

min{|ay|m, |by|m, |(a+ nb)y|m} =
m− 2((s+ 1)b+ 1)

2
.

⊲ (3) (m = a+ b). Choose an integer x such that

ax ≡ −bx ≡
a+ b− 1

2
(mod m).

We have

(a+ nb)x ≡ (n− 1)bx ≡
n+ a+ b− 1

2
(mod m).

Thus we see that if n = 2(s + 1)(a + b) (which is obtained by taking t = a in B′

s)

then

min{|ax|m, |bx|m, |(a+ nb)x|m} =
a+ b− 1

2
.

Moreover, it can be shown that if n = 2(s+ 1)(a+ b) then

min{|ay|m, |by|m, |(a+ nb)y|m} 6
a+ b− 1

2

for all y; 1 6 y 6 m/2. Thus we see that

max
16y6m/2

min{|ay|m, |by|m, |(a+ nb)y|m} =
a+ b− 1

2
.

On the other hand, if n 6= 2(s+ 1)(a+ b) then it is obvious that

min{|ay|m, |by|m, |(a+ nb)y|m} 6
a+ b− 3

2
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for each y. Thus we see that

max
16y6m/2

min{|ay|m, |by|m, |(a+ nb)y|m} =
a+ b− 3

2
.

To calculate d(M) we apply the definition d3(M). Let us denote m values in (1),

(2), and (3) by m1,m2, and m3, respectively. Then

d(M) = max
(m1 − (2(s+ 1)b+ 1)

2m1
,
m2 − 2((s+ 1)b+ 1)

2m2
,
a+ b − ε

2m3

)

=
m1 − (2(s+ 1)b+ 1)

2m1
.

Here ε = 1 if n = 2(s + 1)(a + b) and ε = 3 if n 6= 2(s+ 1)(a + b). This completes

the proof. �

Corollary 3.1. Let M = {a, b, a + nb}, where a < b, gcd(a, b) = 1, a and b

are of opposite parity and n ∈ {k(a + b), k(a + b) + 2: k ∈ 2N}. Then µ(M) =
1
2 (a+ b− 1)/(a+ b).

P r o o f. If n ∈ {k(a+ b), k(a+ b)+ 2: k ∈ 2N} then it follows from the theorem

that µ(M) > d(M) = 1
2 (a+ b− 1)/(a+ b). On the other hand, we always have

µ(M) 6 µ({a, b}) = ⌊ 1
2 (a+ b)⌋/(a+ b). Thus we have the corollary. �

4. Both a and b are odd integers

Theorem 4.1. Let M = {a, b, a + nb}, where a < b, gcd(a, b) = 1, and a, b are

odd integers. Then

d(M) =















1

2
= µ(M) if n is even;

a+ nb

2{a+ (n+ 1)b}
if n >

(b− 2)(a+ b)

2b
and odd.

P r o o f. Suppose that n is even. Observe that all three elements of M are

odd. Therefore, any set S of nonnegative integers which contains elements of the

same parity is an M -set and hence δ(S) 6 1/2. On the other hand, if we take

S = {1, 3, 5, . . .} then δ(S) = 1/2. Hence µ(M) = 1/2. Now taking x = 1/2 in the

definition of d1(M) we get 1/2 6 d1(M) = d(M). But we always have d(M) 6

µ(M) = 1/2. Consequently, d(M) = 1/2. Next, suppose that n > 1
2 (b − 2)(a+ b)/b

and odd. To calculate d(M) we consider the following possible values of m.
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⊲ (1) (m = 2a + nb). Choose x such that x ≡ (m− 1)/2 (mod m). This gives

bx ≡ (m− b)/2 (mod m), and ax ≡ (m− a)/2 (mod m). Since (a + nb)x ≡ −ax

(mod m), therefore

min{|ax|m, |bx|m, |(a+ nb)x|m} =
m− b

2
.

Also it can be seen that

min{|ay|m, |by|m, |(a+ nb)y|m} 6
m− b

2

for each y; 1 6 y 6 m/2.

⊲ (2) (m = a + (n + 1)b). The proof is identical to the one in (1), and therefore

omitted. We have

min{|ay|m, |by|m, |(a+ nb)y|m} 6
m− b

2

for each y; 1 6 y 6 m/2.

⊲ (3) (m = a+ b). Observe that m is even. Now we claim that

min{|ax|m, |bx|m, |(a+ nb)x|m} 6=
m

2

for any x.

Suppose that for some x, ax ≡ −bx ≡ m/2 (mod m). This gives (a + nb)x ≡

m/2−nm/2 ≡ 0 (mod m). Hence the claim is true in this case. The other possibility

we can have is that for some x, (a + nb)x ≡ m/2 (mod m). The claim will be false

only if ax ≡ −bx ≡ m/2 (mod m). But this is not possible. Therefore, we have the

claim and hence,

min{|ay|m, |by|m, |(a+ nb)y|m} 6
m− 2

2
=

a+ b− 2

2

for each y; 1 6 y 6 m/2.

To calculate d(M) we apply the definition d3(M). Let us denote m values in (1),

(2), and (3) by m1,m2, and m3, respectively. Then

d(M) = max
(m1 − b

2m1
,
m2 − b

2m2
,
m3 − 2

2m3

)

=
m2 − b

2m2
=

a+ nb

2{a+ (n+ 1)b}
.

For, we always have 1
2 (m2 − b)/m2 > 1

2 (m1 − b)/m1, and
1
2 (m2 − b)/m2 >

1
2 (m3 − 2)/m3 if and only if 2m2 > b(a + b) if and only if n > 1

2 (b − 2)(a+ b)/b.

Thus we have the theorem. �
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5. Concluding remark

Using µ(M) forM = {a, b, a+nb} is a generalization of µ(M) forM = {a, b, a+b}

which was discussed earlier by Rabinowitz and Proulx [11], Gupta [2], and Liu and

Zhu [5]. We are unable to calculate the values or bounds of µ(M) for some finite

number of odd integers n.

A c k n ow l e d g em e n t. I am very much thankful to the anonymous referee for

his/her useful remarks for the improvement of the paper.
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