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MAXIMAL UPPER ASYMPTOTIC DENSITY OF SETS OF
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Abstract. Let M be a given nonempty set of positive integers and S any set of nonnegative
integers. Let §(S) denote the upper asymptotic density of S. We consider the problem of
finding

(M) = sup §(5),
S

where the supremum is taken over all sets S satisfying that for each a,b € S, a —b ¢ M. In
this paper we discuss the values and bounds of (M) where M = {a,b,a + nb} for all even
integers and for all sufficiently large odd integers n with a < b and gecd(a,b) = 1.
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1. INTRODUCTION

For any set S of nonnegative integers, we denote by S(n) the number of elements
x € S such that x < n. As usual, we define the upper and lower asymptotic
densities of S (denoted by &(S) and §(S), respectively) by 4(S) = limsup S(n)/n

n—oo
and 0(5) = hnrr_1>1£f5(n)/n If §(S) = &(5), we denote the common value by §(S),
and say that S has density §(S). Now suppose that M is a given nonempty set
of positive integers. Motzkin [7] asks to determine the maximal upper asymptotic
density defined by
p(M) = sgpg(S),

where the supremum is taken over all sets S satisfying that for each a,b € S, a—b ¢
M. Such sets S are called M -sets in the literature.

Initial work on this problem is due to Cantor and Gordon [1], in which they show
the existence of u(M) for each M and also determine p(M) when M has one or two
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elements. They prove that if |[M| = 1, then (M) = 1/2 and if M = {a,b} with
ged(a,b) = 1, then pu(M) = [3(a+b)]/(a+b). By a result of Cantor and Gordon
it is sufficient to consider the problem only for those sets M whose elements are
relatively prime. Furthermore, they give the following lower bound for p(M).

Lemma 1.1. Let M = {my,ma,ms,...} and let k, m be positive integers such
that ged(k,m) = 1. Then

1
w(M) > sup — min |km;|m,
(kym)=1T0 1

where |z|,, denotes the absolute value of the absolutely least remainder of x mod m.

The following remark by Haralambis [4] gives three equivalent definitions of the
right hand side expression of the inequality in Lemma 1.1. Throughout this paper
we use the third definition, i.e., d3(M).

Remark 1.1. Let M ={mq, mo,...,my,}, and

di(M) = sup min [lzml,
ze(0,1) *

1
day(M) = sup — min |km;|m,
(k,ym)=1T

1
ds(M) = max — min |km;|m,
m=mj+my
1<k<m /2

where for x € R, ||z|| denotes the distance of = from the nearest integer and m;, my;
represent distinct elements of M. Then di (M) = do(M) = d3(M), and we denote
this common value by d(M).

Thus we have u(M) > d(M). At this stage we mention the very first conjecture
on this problem by Haralambis [4].
Conjecture. If |M| =3, then u(M) = d(M).

The above conjecture holds true if |M| < 2 and is false if |M| = 4. The proofs and
counter examples may be found in [4].
The following lemma in [4] gives an upper bound for u(M).

Lemma 1.2. Let M be a given set of positive integers, a a real number in the
interval [0, 1], and suppose that for any M-set S with 0 € S there exists a positive
integer k (possibly dependent on S) such that S(k) < (k+ 1)a. Then u(M) < a.
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Haralambis [4] gives some general estimates and expressions for (M) for most
members of the families {1,a,b} and {1,2,a,b}. Gupta and Tripathi [3] give the
value of p(M) when M is finite and the elements of M are in arithmetic progression.
Liu and Zhu [5] compute the values of p(M) for M = {a,2a,...,(m —1)a,b}, M =
{a,b,a+b}, and give bounds of u(M) for M = {a,b,b—a,b+a} using graph theoretic
techniques. They further compute u(M) for M = [1,a]U[b, m+1], where a < b in [6].
The present author in joint works with Tripathi ([8], [9], [10]) discusses the problem
for the family M = {a,b,c} with a < b, where ¢ = nb or na or n(a + b), and for
those families M which are related to finite arithmetic progressions. In the present
paper we discuss the problem of finding u(M) for M = {a,b,a + nb} for all even
integers n and for all sufficiently large odd integers n with a < b and ged(a,b) = 1.
In Sections 2, 3 and 4, we give bounds or the exact values of pu(M).

2. NUMBERS a AND b ARE OF OPPOSITE PARITY AND
n>b—a-+2I1S AN ODD INTEGER

In this section we study the family M = {a,b,a + nb}, where a < b, ged(a,b) =
1 and n is a sufficiently large odd integer. Mainly, d(M) is calculated, which is
a lower bound of (M) and as we are working in the case where |M| = 3, d(M) is
conjecturally equal to pu(M).

Lemma 2.1. For each r,s > 0, set

Ar=b—a+{2r(a+b)+2t: 1 <t<al,
Bs=b—a+{2(s+1)a+2sb+2t: 1 <t <b}.

The collection {Ag, A1, ..., By, B1,...} partitions 2N — 1\ {1,3,...,b — a}.

Proof. Clearly, |A;| = a and |Bs| = b for each r,s > 0. Also, we have the
recurrences A,11 = A, + 2(a + b) and Byy1 = Bs + 2(a + b). Notice that {4, By}
partitions the set [b—a+2,b—a+2(a+b)]N (2N =1\ {1,3,...,b —a}). Thus we
have the lemma. ]

Theorem 2.1. Let M = {a,b,a + nb}, where a < b, ged(a,b) =1, a and b are of
opposite parity and n > b— a+ 2 is an odd integer. For each r,s > 0, let A, and B,
be as given in Lemma 2.1. Then

m—((2r+1)b+1)
2m

m— ((2s + 1)b+ 2t)
2m

if n € A,, where m =a+ (n+ 1)b;
d(M) =

if n € B, where m = 2a + nb.
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Proof. CaselI (n € A,). To calculate d(M) we use d3(M). According to the
definition of ds(M), the possible values of m may be a+ (n+ 1)b, 2a +nb, and a +b.
> (1) (m = a+ (n+ 1)b). Since ged(b,m) = 1, we can choose an integer x such

that
m—((2r+1)b+1)

br = 5 (mod m).
We have
ar=—(n+1)bx = — (n+ 1)m — ((ZT;_ Hb+1)
_ (n+ D(@r+1)b+1)

5 (mod m).

Since (n+1)((2r+1)0+1) = 2r+1)(n+1)b+n+1 = 2r+1)m+(2r+1)b+1—2(a—t),
therefore,
m+2r+1)b+1—-2(a—1t) m—(2r+1)b+1)+2(a—1)

5 - 5 (mod m).

ar =

We also have that (a + nb)z = —bz (mod m). Thus

—((2 1 1
min{Jazl, bl (o + b)) = T EPED,

We now show that for all y such that 1 <y < m/2 and y # «x,

min{aglm [bglms (@ + nb)ylm} < Tt 7“; )b+1)

Let :=(2r+1)b+ 1, and 1 < y < m/2. Suppose for some integer 1,

— —+1i (mod m).

m
b _
Y=7

DO |~

This gives

%+%_(a—t)—(n+1)i (mod m).

If m/2 —1/24 i modulo m is in [m/2 —1/2,m/2 4+ 1/2], then 0 < i < [. Since we
have that (a + nb)y = —by (mod m), the inequality will be valid if we show that
m/2+1/2— (a—t) — (n+ 1)i modulo m is in [—(m/2 —1/2),m/2 — /2] for each
1 <7 < I. First, let ¢ = [. In this case, the congruences become

ay

m 1 m 1
=g -g+i==(3 - 3) twodm),
m 1
(a+nb)y = —by = 573 (mod m),
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and

ayz%—i—%—(a—t)—(n—l—l)l (mod m).

Since (n+ 1)l = 2r+1)m+1—2(a—1t),

— =+ (a—1t) (mod m).

- m
ay:; B

Therefore, we have the inequality in this case. Next, let 1 <4 <1 — 1. Observe that

2r
{1,2,....1-13¢c | J B,
p=0

where I, = [pb+((p —L)a+t+1)/(n+ 1), (p+1)b+ (pa +t)/(n + 1)]. Indeed, since
the largest integer in I, is (p + 1)b, we only need to verify that (p + 1)b+ 1 is in
I,+1. Notice that (pa+t+1)/(n+1) < 1ifand only if pa < n+1—-t—-1 =
(2r — )a+t < 2ra, ie., p < 2r, which is true. Hence (pa+¢+1)/(n+ 1) < 1. This
implies (p + 1)b+ (pa+t+1)/(n+1) < (p+ 1)b+ 1, and hence (p+ 1)b+ 1 is in
1,11 and it is the smallest integer of the interval.

As 1 < i <1 —1, therefore, for some 0 < p < 27,1 € I, ie,

p-1a+t+1 . pa+t
b+ —F——— <i< b ;
PO+ n+1 i<+l +n+1
therefore
pm+l—(a—t)gz_g(p—i—l)m—(a—t)
n+1 n+1
This gives
m p+1l)m—(a—1t) m 1 )
Dl g —1)— < 0l _(g—1t)—
5 t5 (a—t)—(n+1) i} S5 15 (a—1t)—(n+1)
m pm—+1—(a—t)
<o 4 —(a—t)—(n+pE 270
g tg—la-t) -+ )=
% I I I
m m
_ Dyl <Dl (g—1)— i< T2 _Z
p+lm+S+5< 5+ (a-t)-(n+1)i<—pm+ 5 -3,
thus
—m—(m—i)<m+£—(a—t)—(n+1)i<—m+m—£
b 2 2)S72 72 STy Ty

Therefore, m/2 +1/2 — (a —t) — (n + 1)i modulo m is in [—(m/2 —1/2),m/2 — /2]
for each 1 < ¢ <! — 1. Hence, we have the desired inequality. Thus we see that
m—((2r+1)b+1)

i b b - .
Kr;lgﬁm(mm{laylm’l Ylm, (@ +nb)ylm}) 5
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> (2) (m = 2a + nb). Choose an integer x such that

m— ((2r + 1)b+ 2)

br =
2

(mod m).

Such an z exists. For, let d = ged(b,m), and d # 1. Then d | 2a. If b is odd, then as
d | b, d > 3 hence d | a, which shows that ged(a,b) # 1, which is false. Hence, d =1
and hence the congruence in this case is true. Now, let b be even. Since d | 2a and
a is odd with ged(a,b) = 1, we have d = 2. Notice that 2 | (m — ((2r + 1)b + 2))/2,
and hence the congruence is again true. We have

m—((2r+1)b+2) m— (2r+ 1)nb—2n

5 - 5 (mod m),

2ax = —nbx = —n

which implies

m— (2r+1)m+2(2r+ 1)a —2n
2

20z = — =n—(2r 4+ 1)a (mod m).

Nown—(2r+1la=b—a+2r(a+b)+2t— 2r+1)a= 2r+1)b—2(a—1t) =
(2r+1)b+2—2(a—t+1). This gives

202 = (2r+1)b+2—-2(a—t+1)=—-(m—(2r+1)b+2)+2(a—t+1)) (mod m),

therefore,
—((2 Nb+2)+2(a—t+1
e ™ ((2r + )+2)+ (a—t+ )(modm).
Since (a 4+ nb)x = —ax (mod m), we have

—((2 1 2
min{Jazl, bl (o -+ b)) = T EOE2)

Also, as in (1), it can be shown that for all y such that 1 <y < m/2 and y # x,

. m—((2r+1)b+2
minlapl byl (0 + nbyl} < " (ELED0EE)
Thus we see that

. m— ((2r + )b+ 2)
my b ms b m - .
max Guin{laylo [l (0 + nblyln) .

> (3) (m = a+b). Choose an integer x such that

b—-1
ar = —br = % (mod m).
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We have

(a+nb)z=(n—1)bx = n% (mod m).

Thus we see that if n = (2r + 1)(a + b) (which is obtained by taking ¢t = a in A,)

then
a+b—1

2
Moreover, it can be shown that if n = (2r + 1)(a + b) then

min{|az|m, [bx|m, |(a + nb)z|m} =

. a+b-1
min{|ay|m, [0Y|m, [(a +1b)ylm} < ———
for all y; 1 < y < m/2. Thus we see that
. a+b—1
e (uinlaylo [yl 0+ D)yl ) = S0

On the other hand, if n # (2r 4+ 1)(a + b) then it is obvious that

i a+b-—3
min{|aylm, [bylm, [(a +nb)ylm} < ———
for each y. Thus we see that
a+b-3
i ms b my b m = .
maxmin{layl byl (a+ nbyln}) = S5

To calculate d(M) we apply the definition ds(M). Let us denote m values in (1),
(2), and (3) by m1, ma, and ms, respectively, i.e., m;y = a+ (n+ 1)b, ma = 2a + nb,
and ms = a + b. Then

d(M) = max (m1 —((2r4+1)b+1) ma—((2r+1)b+2) a—l—b—e)
2m1 ’ 2m2 ’ 2m3
~omy — ((2r+1)b+1)
- 2m1 '

Heree=1ifn=2r+1)(a+b) ande =3ifn# (2r +1)(a+ ).

Case II (n € Bs). To calculate d(M) we use d3(M) and hence as in the previous
case we consider the following values of m.

> (1) (m=a+ (n+ 1)b). Choose = such that

be = L= ((28; Do+ 1) (mod m).
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We have
. 1)m— ((25; 1b+1)
_ (n+ 1)((22+ Hb+1) (mod m).

Since (n+1)((2s+1)b+1) = (2s+1)m—(2s+1)a+n+1 = (2s+1)m+(2s+1)b+1+2t,

ax = —(n+ 1)bx

25+ 1 1+2 —((2s+1 142
m+(8+2)b+ +2t _ m ((s+2)b+ +2t) (mod m).

ar =

We also have that (a + nb)z = —bx (mod m). Thus

—((2 Db+ 1+ 2t
min{|az ], o], |(a + nb)|m} = = ((Hz) HE,

Moreover, it can also be shown as in the Case I that

m— ((2s+ 1)b+ 1+ 2t)
2

min{|ay|m, [by|m, [(a +nb)y|m} <

for each y; 1 <y < m/2. Thus we see that

, m— ((2s+1)b+ 1+ 2¢)
b b - .
lgr;lggwmm{laylm,l Ylm, [(@+ nb)ylm} 5

> (2) (m = 2a + nb). Choose an integer x such that

be =" ((28; Do +2) (mod m).

Such an z exists. For, arguments are similar to (2) of Case I. We have

m—((2s+1)b+2) m— (2s+ 1)nb—2n
5 - 5 (mod m).

2ax = —nbx = —n

This implies

m—(2s+1)m+2(2s+1)a—2n
2

2ax = — =n—(2s+ 1)a (mod m).

Since n — (2s+ 1)a=b—a+2(s+ 1)a+2sb+ 2t — (2s+ 1)a = (2s + 1)b + 2¢,
200 = (2s+ )b+ 2t =—(m — ((2s+ 1)b+ 2t)) (mod m).

Therefore,

az = — 2= ((2s —2|— 1)b+20) (mod m).
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Since (a + nb)x = —ax (mod m), we have

—((2 1)b+ 2t
min{|a;[;|m,|bx|m,|(a+nb)x|m}: - (( S;— ) - )

Also, it can be shown that for all y such that 1 <y < m/2 and y # =z,

—((2 1 2
min{lay, byl (0 + nbjyy < (T2,

Thus we see that

. m— ((2s +1)b+ 2t)
ms b ms b myJ = .
lgglggwmm{layl byl [(a + nb)y|m} 5

> (3) (m = a+b). Choose an integer x such that

-1
ar = —br = % (mod m).

We have
n—

(a+nb)z=(n—1)bx = (mod m).

Thus we see that if n = (254 1)(a + b) + 2 (which is obtained by taking ¢ = 1 in By)

th
e a+b—1

2
Moreover, it can be shown that if n = (2s 4+ 1)(a + b) + 2 then

min{|az|m, [bL|m, |(a + nb)x|n} =

. a+b—1
win oy, [y (a+ Byl } < 20t
for all y; 1 <y < m/2. Thus we see that
a+b—-1
i m |0Ylm b)ylm} = ——F—-.
(Jnax  min{[ay|m, [by|m, (@ +nb)y|m} 5

On the other hand, if n # (25 4+ 1)(a + b) + 2 then it is obvious that

. a+b—-3
wmin{layl, [0yl (0 -+ nb)yln} < 0=
for each y. Thus we see that
. a+b—-3
(e mindaym, [bylm, (@ + nb)ylm} = ——.

61



To calculate d(M) we again apply the definition d3(M). Let us denote m values in
(1), (2), and (3) by m1, meo, and ms, respectively, i.e., m; = a+(n+1)b, ma = 2a+nb,
and m3 = a + b. Then

d(M) = max(ml —((2s+1)b+1+2t) ma—((2s+1)b+2t) a+b—5)
2m1 ’ 2m2 ’ 2m3
~ my — ((2s +1)b+2t)
o 2m2 '

Here e =1ifn = (2s+1)(a+b)+2and ¢ =3 if n # (25 + 1)(a + b) + 2. This
completes the proof of the theorem. O

Corollary 2.1. Let M = {a,b,a + nb}, where a < b, ged(a,b) = 1, a and b
are of opposite parity and n € {(2r + 1)(a +b), (2s + 1)(a + b) + 2}. Then p(M) =
a+b—1)/(a+Db).

Proof. Ifn e {(2r+1)(a+0b),(2s+ 1)(a+ b) + 2} then it follows from the
theorem that 1(M) > d(M) = 3(a+b—1)/(a+b). On the other hand, we always
have u(M) < p({a,b}) = |3(a+b)|/(a + b). Thus we have the corollary. O

3. NUMBERS a AND b ARE OF OPPOSITE PARITY AND n IS AN EVEN INTEGER

Theorem 3.1. Let M = {a,b,a + nb}, where a < b, gcd(a,b) = 1, a and b are of
opposite parity and n is even. For each r,s > 0, set

Al ={2(ra+7rb+t): 1<t<b}, and B.={2(sa+ (s+1)b+1t): 1<t <a}.

(

Then
—2(rb+t
% if n € Al, where m = 2a + nb;
M) = 2s+1)b+1
m ((82—’_ Jo+1) if n € B, where m = a+ (n+ 1)b.
m

Proof. Asin Lemma 2.1 it can be shown that the collection {Af, A, ..., B,
Bi, ...} partitions the set 2N.

The method of proof of this theorem is similar to that of the previous theorem.
Therefore, we omit the similar calculations here.

Case I (n € A). To calculate d(M) we consider the following three values of m.

> (1) (m=a+ (n+ 1)b). Since ged(b,m) = 1, we can choose an x such that

m— (2rb+ 1)

5 (mod m).

bxr =
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We have

— (2 1
ar=—(n+1bxr= —(n+ 1)%
_ m—(n+1)(2rb+1) (mod m)
= 5 .
Since (n+1)(2rb+ 1) =2rm +2rb+ 1 + 2t,
ar = — (2rb+1+20) (mod m).

2

We also have that (a + nb)z = —bx (mod m). Thus

m— (2rb+ 1+ 2t)
5 :

min{|az|m, [bx|m, |(a + nb)z|m} =

Moreover, for all y such that 1 <y < m/2 and y # z,

—(2rb+1 + 2t
min{|ay|m,|by|m,|(a+nb)y|m}<m (7“2+ + )

Thus we see that

) m— (2rb+ 14 2t)
m» b ms b myf — .
Kr;lgﬁmmm{layl by |m, [(@ + nb)yl|m} 5

> (2) (m = 2a + nb). Choose an integer x such that

b = w (mod m).
We have o(rh 4 1
2ax = —nbx = —nw =n(rb+1) (mod m).

Since n(rb + 1) = rm + 2rb + 2t,
2ax = 2rb+ 2t = —(m — 2(rb +¢)) (mod m),

therefore,

ar = —w (mod m).

We also have (a 4+ nb)z = —az (mod m). Thus

m—2(rb+1t)

min ol bl (a+ bl } = =
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Also, it can be shown that for all y such that 1 <y < m/2 and y # =z,

—2(rb+t

2
Thus we see that
) m—2(rb+1t)
(e mindlaylm, [bylm, (@ +nb)ylm} = —————
> (3) (m = a+b). Choose an integer x such that
b—-1
ar = —bxr = % (mod m).
We have a1
(a+nb)z=(n—1)bx = % (mod m).

Thus we see that if n = 2r(a + b) + 2 (which is obtained by taking ¢ = 1 in A!) then

a+b—1

min{|az|m, [b2|m, [(a +nb)z|m} = —

Moreover, it can be shown that if n = 2r(a + b) + 2 then

. a+b—1
min{|aylm, [bylm, [(a +nb)ylm} < ———
for all y; 1 < y < m/2. Thus we see that
a+b—1
i b b =
lgr;lgglﬂ(mm{laylm,l Ylm., [(@ +nb)y|m}) 5

On the other hand, if n # 2r(a + b) + 2 then it is obvious that

. a+b—3
min{|ay|m, [0Y|m, [(a +1b)ylm} < ———
for each y. Thus we see that
a+b—3
i b b =
e minlaylm, [by|m, |(a +nb)ylm} 5

To calculate d(M) we apply the definition ds(M). Let us denote m values in (1),
(2), and (3) by m1,m2, and mg, respectively. Then

) Y

d(M):maX<m1—(2rb+1+2t) my = 2(rb + ) a+b—e) _ my —2(rb+1)

2m, 2msa 2ms 2meo

Heree =1ifn=2r(a+b)+2and e =3if n# 2r(a+b) + 2.
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Case II (n € B.). To calculate d(M) we use d3(M).
> (1) (m=a+ (n+ 1)b). Choose z such that
m—(2(s+1)b+1)

bx = 5 (mod m).

We have

m—(2(s+1)b+1)
2
- m—=(2(s+1)b+1)(n+1)

ax=—-(n+lbzx= —(n+1)

(mod m).

Since (n+1)(2(s+1)b+1) = 2(s+1)(m—a)+n+1 = 2(s+1)m+2(s+1)b+1—-2(a—1),

wr = M~ (2(s + 1)b2+ 1 +2(a—1t) (mod m).

We also have that (a + nb)z = —bx (mod m). Thus

—(2 Hb+1
win{[a]m, 0], (@ + nb)lm} = = ((8; e

Moreover, it can also be shown that

m— (2(s+ 1)b+1)
2

min{|aylm, |0y|m, [(a +nb)y|m} <

for each y; 1 < y < m/2. Thus we see that

. m—(2(s+1)b+1)
b b = .
1<r;ﬂgagfmmm{laylm,| Ylms [(@ +nb)ylm} 5

> (2) (m = 2a + nb). Choose an integer x such that

br = 2 2((8; Do+1) (mod m).

We have

m—2((s+1)b+1)
2

2ax = —nbx = —n = (s+ 1)nb+n (mod m).
Since (s+1)nb+n = (s+1)(m—2a)+2sa+2(s+1)b+2t = (s+1)m+2(s+1)b—2(a—1t),
200 =2(s+ 1)b—2(a—t)=—(m—-2((s+ )b+ 1)+ 2(a —t + 1)) (mod m),
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therefore,
-2 1)b+1 20a—t+1
=™ (s+1) +2)+ (a—t+1) (mod m).

We also have (a 4+ nb)z = —az (mod m). Thus

—92 Hv+1
min{|az|m, [b2|m, |(@ + 1b)z|m} = — ((s; )b+1)

Also, it can be shown that for all y such that 1 <y < m/2 and y # =z,

-2 1 1
min{laylo, byl (a-+ byl < T2 LDOED,

Thus we see that

) m—2((s+1)b+1)
ms b ms b mf — .
1<I;ﬂg;rg/zmm{layl by [(a +nb)yl|m} 5

> (3) (m = a+b). Choose an integer x such that

a+b-—1

ar = —bx = — (mod m).
We have b1
(a+nb)z=(n—1)bx = % (mod m).

Thus we see that if n = 2(s + 1)(a + b) (which is obtained by taking t = a in BY)

then
a+b—1

2
Moreover, it can be shown that if n = 2(s 4+ 1)(a + ) then

min{|az|m, [0x|m, [(a + nb)z|m} =

. a+b—-1
min{|aylm, [bylm, [(a +nb)ylm} < ———
for all y; 1 < y < m/2. Thus we see that
a+b—1
i b b = -
el ol 0+ 10l = 5

On the other hand, if n # 2(s+ 1)(a + b) then it is obvious that

i a+b—3
min{|ay|m, [0Y|m. [(a +nb)ylm} < ———
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for each y. Thus we see that

a+b—3
i b b e
lgglggl/len{Iaylml Ylm, (@ +nb)ylm} 5

To calculate d(M) we apply the definition ds(M). Let us denote m values in (1),
(2), and (3) by my,m2, and mg, respectively. Then

d(M) = max (m1 —(2(s+1)b+1) me—2((s+1)b+1) a—l—b—e)
2m1 ’ 2m2 ’ 2m3
- omy — (2(s+1)b+1)
- 2m1 '

Heree = 1ifn =2(s+1)(a+b) and € = 3 if n # 2(s + 1)(a + b). This completes
the proof. O

Corollary 3.1. Let M = {a,b,a + nb}, where a < b, ged(a,b) = 1, a and b
are of opposite parity and n € {k(a + b),k(a + b) + 2: k € 2N}. Then pu(M) =
fa+b—1)/(a+D).

Proof. Ifn e {k(a+b),k(a+b)+2: k € 2N} then it follows from the theorem
that u(M) > d(M) = 1(a+b—1)/(a+b). On the other hand, we always have
pw(M) < p({a,b}) = |(a+b)]/(a+b). Thus we have the corollary. O

4. BOTH a AND b ARE ODD INTEGERS

Theorem 4.1. Let M = {a,b,a + nb}, where a < b, ged(a,b) = 1, and a, b are
odd integers. Then

% = u(M) if n is even;

d(M) =
_atnb s 0=2@HD) ) oda.
2{a+ (n+ 1)b} 2b

Proof. Suppose that n is even. Observe that all three elements of M are
odd. Therefore, any set S of nonnegative integers which contains elements of the
same parity is an M-set and hence 6(S) < 1/2. On the other hand, if we take
S = {1,3,5,...} then 6(S) = 1/2. Hence u(M) = 1/2. Now taking = = 1/2 in the
definition of di(M) we get 1/2 < di(M) = d(M). But we always have d(M) <
p(M) = 1/2. Consequently, d(M) = 1/2. Next, suppose that n > (b —2)(a +b)/b
and odd. To calculate d(M) we consider the following possible values of m.
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> (1) (m = 2a + nb). Choose x such that z = (m — 1)/2 (mod m). This gives
br = (m —b)/2 (mod m), and ax = (m — a)/2 (mod m). Since (a + nb)x = —ax
(mod m), therefore
m—b

min{|az|m, [bz|m, |(a + nb)x|m} = —

Also it can be seen that

m—>b
2

min{|ay|m, [by|m, [(a +nb)y|m } <

for each y; 1 <y < m/2.
> (2) (m = a+ (n+ 1)b). The proof is identical to the one in (1), and therefore
omitted. We have
m—2>

min{|ay|m, [by|m, [(a +nb)y|m} < 5

for each y; 1 <y < m/2.
> (3) (m = a+b). Observe that m is even. Now we claim that

min{|az], b}, |(a +nb)el} # 3

for any .

Suppose that for some x, ax = —bx = m/2 (mod m). This gives (a + nb)z =
m/2—nm/2 =0 (mod m). Hence the claim is true in this case. The other possibility
we can have is that for some z, (a + nb)z = m/2 (mod m). The claim will be false
only if ax = —bx = m/2 (mod m). But this is not possible. Therefore, we have the
claim and hence,

m—2 a+b—2

min{|ay|m, [0y|m. [(a +1b)ylm} < —— = ——

for each y; 1 <y < m/2.
To calculate d(M) we apply the definition ds(M). Let us denote m values in (1),
(2), and (3) by m1,ma, and mg, respectively. Then

d(M):max(ml_b ma — b m3—2>:m2—b_ a+nb

2my  2ms T 2mg 2mo  2{a+ (n+1)b}’

For, we always have %(mg —b)/mg = %(ml —b)/mq, and %(mg —b)/me =
2(ms — 2)/mg if and only if 2my > b(a + b) if and only if n > 1(b—2)(a +b)/b.
Thus we have the theorem. O
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5. CONCLUDING REMARK

Using p(M) for M = {a, b, a+nb} is a generalization of p(M) for M = {a,b,a+b}

which was discussed earlier by Rabinowitz and Proulx [11], Gupta [2], and Liu and

Zhu [5]. We are unable to calculate the values or bounds of p(M) for some finite

number of odd integers n.
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