Optical Properties of Solids: Lecture 3

Stefan Zollner

New Mexico State University, Las Cruces, NM, USA and Institute of Physics, CAS, Prague, CZR (Room 335) zollner@nmsu.edu or zollner@fzu.cz

These lectures were supported by

- European Union, European Structural and Investment Funds (ESIF)
- Czech Ministry of Education, Youth, and Sports (MEYS), Project IOP Researchers Mobility - CZ.02.2.69/0.0/0.0/0008215

Thanks to Dr. Dejneka and his department at FZU.
$\star^{\star} \star_{\star}^{\star}$
$\star \star_{\star}$
\star^{\star}

EUROPEAN UNION

European Structural and Investment Funds Operational Programme Research, Development and Education

Optical Properties of Solids: Lecture 3

Maxwell's Equations in Vacuum, Plane Waves Polarized Light
Stokes Parameters, Poincare Sphere Jones Vectors, Jones Matrix, Mueller Matrix Decoherence and Depolarization

References: Maxwell's Equations and Ellipsometry

Standard Texts on Electricity and Magnetism:

- J.D. Jackson: Classical Electrodynamics
- Landau \& Lifshitz, Vol. 2: Classical Theory of Fields
- D.E. Aspnes: Practical Electrodynamics (forthcoming)

Optics:

- E. Hecht: Optics
- M. Born, E. Wolf: Principles of Optics

Ellipsometry and Polarized Light:

- R.M.A. Azzam and N.M. Bashara: Ellipsometry and Polarized Light
- H.G. Tompkins and E.A. Irene: Handbook of Ellipsometry (chapter by Josef Humlicek)
- H. Fujiwara, Spectroscopic Ellipsometry
- H.G. Tompkins and J.N. Hilfiker: Spectroscopic Ellipsometry
- H. Fujiwara and R.W. Collins: Spectroscopic Ellipsometry for PV (Vol 1+2)
- Zollner: Propagation of EM Waves in Continuous Media (Lecture Notes)

Scalars and Vectors

- Scalar: Invariant under rotations and inversion
- Vector: Transforms like x, y, z under rotation. Sign change under inversion - Pseudoscalar: Invariant under rotations, sign change under inversion
- Pseudovector: Transforms like x, y, z under rotation. Invariant under inversion.

	$\mathrm{O}_{\mathrm{h}}(\mathrm{m}-3 \mathrm{~m})$	\#	1	4	2_{100}	3	2110	-1	-4	m_{100}	-3	m_{110}	functions	
BSW	Mult.	K	1	6	3	8	6	1	6	3	8	6		
Γ_{1}	$\mathrm{A}_{1 \mathrm{~g}}$	$\Gamma_{1}{ }^{+}$	1	1	1	1	1	1	1	1	1	1	$1, x^{2}+y^{2}+z^{2}$	Scalar
$\Gamma_{1}{ }^{\prime}$	$\mathrm{A}_{1 \mathrm{u}}$	$\Gamma_{1}{ }^{-}$	1	1	1	1	1	-1	-1	-1	-1	-1		Pseudoscalar
Γ_{2}	$\mathrm{A}_{2 \mathrm{~g}}$	$\Gamma_{2}{ }^{+}$	1	-1	1	1	-1	1	-1	1	1	-1		
$\Gamma_{2}{ }^{\prime}$	$\mathrm{A}_{2 \mathrm{u}}$	Γ_{2}	1	-1	1	1	-1	-1	1	-1	-1	1	$x y z$	
Γ_{12}	E_{g}	$\Gamma_{3}{ }^{+}$	2	0	2	-1	0	2	0	2	-1	0	$\left(2 z^{2}-x^{2}-y^{2}, x^{2}-y^{2}\right)$	
$\Gamma_{12}{ }^{\prime}$	E_{u}	Γ_{3}	2	0	2	-1	0	-2	0	-2	1	0		
Γ_{25}	$\mathrm{T}_{2} \mathrm{u}$	Γ_{5}	3	-1	-1	0	1	-3	1	1	0	-1		
$\Gamma_{25}{ }^{\prime}$	$\mathrm{T}_{2 \mathrm{~g}}$	$\Gamma_{5}{ }^{+}$	3	-1	-1	0	1	3	-1	-1	0	1	(xy, xz, yz)	
Γ_{15}	$\mathrm{T}_{1 \mathrm{u}}$	Γ_{4}	3	1	-1	0	-1	-3	-1	1	0	1	($\mathrm{x}, \mathrm{y}, \mathrm{z}$)	Vector
$\Gamma_{15}{ }^{\prime}$	$\mathrm{T}_{1 \mathrm{~g}}$	Γ_{4}^{+}	3	1	-1	0	-1	3	1	-1	0	-1	$\left(\mathrm{J}_{\mathrm{x}}, \mathrm{J}_{\mathrm{y}}, \mathrm{J}_{z}\right)$	Pseudovector

Scalar and Vector Waves

- Field: Scalar or vector depends on position r.
- Physical quantities are always real

Scalar: energy, charge, etc.
Vector: momentum, current density, electric field, etc.

- Scalar wave

$$
s(\vec{r}, t)=A \cos (\vec{k} \cdot \vec{r}-\omega t+\varphi)
$$

- Vector wave

$$
\vec{E}(\vec{r}, t)=\vec{E}_{0} A \cos (\vec{k} \cdot \vec{r}-\omega t+\varphi)
$$

- Where do the complex notations come from?

Fourier Series of Periodic Functions

- A real-valued scalar function $f(t)$ is called periodic with period T, if $f(t)=f(t+T)$ for all values of t.
- A periodic scalar function with period T can be written as a Fourier Series

$$
f(t)=\frac{1}{2} A_{0}+\sum_{m=1}^{\infty}\left[A_{m} \cos (m \omega t)+B_{m} \sin (m \omega t)\right]
$$

with angular frequency $\omega=2 \pi / T$ and Fourier coefficients

$$
\begin{aligned}
& A_{m}=\frac{\omega}{\pi} \int_{-\frac{\pi}{\omega}}^{\frac{\pi}{\omega}} f(t) \cos (m \omega t) d t \\
& B_{m}=\frac{\omega}{\pi} \int_{-\frac{\pi}{\omega}}^{\frac{\pi}{\omega}} f(t) \sin (m \omega t) d t
\end{aligned}
$$

$$
\text { Jackson, E\&M, } 1975
$$

Fourier Series of Periodic Functions

- Dealing with harmonic functions (sin, cos) is not convenient, because
- We need two functions for each harmonic.
- Taking derivatives is not easy, because sin and cos switch at each order.
- A periodic scalar function with period T can be written as a Fourier Series

$$
f(t)=\sum_{m=-\infty}^{\infty} c_{m} \exp (-i m \omega t)
$$

with complex Fourier coefficients

$$
c_{m}=\frac{\omega}{\pi} \int_{-\frac{\pi}{\omega}}^{\frac{\pi}{\omega}} f(t) \exp (i m \omega t) d t=\left\{\begin{array}{cc}
\frac{A_{0}}{2} & m=0 \\
\frac{1}{2}\left(A_{m}+i B_{m}\right) & m>0 \\
\frac{1}{2}\left(A_{-m}-i B_{-m}\right) & m<0
\end{array}\right.
$$

- The Fourier coefficients are now complex, but the function $f(t)$ is still real.
- The imaginary parts all cancel, if the complex coefficients c_{m} are defined correctly.

Fourier Transforms of Non-Periodic Functions

- If the function $f(t)$ is not periodic, then the period T becomes infinite and the frequency spacing ω between overtones becomes very small.
- The Fourier series now becomes a Fourier Integral.

$$
f(t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} F(\omega) \exp (-i \omega t) d \omega
$$

with the Fourier transform $\mathrm{F}(\omega)$

$$
F(\omega)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(t) \exp (i \omega t) d t
$$

- The prefactors $1 / \sqrt{ } 2 \pi$ before the integral can vary.
- The Fourier transform function $F(\omega)$ may be complex, because it is not a meaningful physical quantity.
- Orthogonality and completeness:

$$
\begin{aligned}
& \frac{1}{2 \pi} \int_{-\infty}^{\infty} \exp \left[i\left(\omega-\omega^{\prime}\right) t\right] d t=\delta\left(\omega-\omega^{\prime}\right) \\
& \frac{1}{2 \pi} \int_{-\infty}^{\infty} \exp \left[i \omega\left(t-t^{\prime}\right) t\right] d \omega=\delta\left(t-t^{\prime}\right)
\end{aligned}
$$

$$
\frac{1}{\sqrt{2 \pi}} \exp (i \omega t)
$$

Orthonormal basis of Hilbert Space of real functions

[^0]
Math with Fourier Transforms

- Convolution theorem:

The Fourier transform of a convolution equals the product of the Fourier transforms.

$$
(f * g)(t)=\int_{-\infty}^{\infty} f\left(t^{\prime}\right) g\left(t-t^{\prime}\right) d t^{\prime}
$$

$$
\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty}(f * g)(t) \exp (i \omega t) d t=\sqrt{2 \pi} F(\omega) G(\omega)
$$

- The Fourier transform of the derivative of $f(\mathrm{t})$ equals $\mathrm{i} \omega \mathrm{F}(\omega)$.

$$
\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f^{\prime}(t) \exp (i \omega t) d t=i \omega F(\omega)
$$

- The complex conjugate of the Fourier transform equals $F(-\omega)$.

$$
\overline{F(\omega)}=F(-\omega)
$$

Fourier Series in Multiple Dimensions

- A real-valued scalar field $s(r)$ in a Bravais lattice (with Bravais lattice vectors \mathbf{T} and reciprocal lattice vectors \mathbf{G}) is called periodic, if $s(\mathbf{r}+\mathbf{T})=s(\mathbf{r})$ for all Bravais lattice vectors T .
- A real-valued periodic scalar field $\mathbf{s}(\mathbf{r})$ in a Bravais lattice can be written as a Fourier sum in reciprocal space

$$
s(\vec{r})=\sum_{\vec{G}} s_{\vec{G}} \exp (i \vec{G} \cdot \vec{r})
$$

with complex Fourier coefficients

$$
s_{\vec{G}}=\frac{1}{V} \int_{C} s(\vec{r}) \exp (-i \vec{G} \cdot \vec{r}) d^{3} \vec{r}
$$

where C is the unit cell with volume $\mathrm{V} . \mathbf{G}$ is a reciprocal lattice vector.

- The same equations apply to a real-valued periodic vector field $\mathbf{E (r)}$.

$$
\begin{aligned}
& \vec{E}(\vec{r})=\sum_{\vec{G}} \vec{E}_{\vec{G}} \exp (i \vec{G} \cdot \vec{r}) \\
& \vec{E}_{\vec{G}}=\frac{1}{V} \int_{C} \vec{E}(\vec{r}) \exp (-i \vec{G} \cdot \vec{r}) d^{3} \vec{r}
\end{aligned}
$$

Fourier Transforms in Multiple Dimensions

- Fourier transforms can also be generalized to multiple dimensions for scalar fields

$$
\begin{aligned}
& S(\vec{r})=\left(\frac{1}{\sqrt{2 \pi}}\right)^{3} \iiint_{-\infty}^{\infty} S(\vec{k}) \exp (i \vec{k} \cdot \vec{r}) d^{3} \vec{k} \\
& S(k)=\left(\frac{1}{\sqrt{2 \pi}}\right)^{3} \iiint_{-\infty}^{\infty} s(\vec{r}) \exp (-i \vec{k} \cdot \vec{r}) d^{3} \vec{r}
\end{aligned}
$$

- and vector fields

$$
\begin{aligned}
& \vec{E}(\vec{r})=\left(\frac{1}{\sqrt{2 \pi}}\right)^{3} \iiint_{-\infty}^{\infty} \vec{E}(\vec{k}) \exp (i \vec{k} \cdot \vec{r}) d^{3} \vec{k} \\
& \vec{E}(k)=\left(\frac{1}{\sqrt{2 \pi}}\right)^{3} \iiint_{-\infty}^{\infty} \vec{E}(\vec{r}) \exp (-i \vec{k} \cdot \vec{r}) d^{3} \vec{r}
\end{aligned}
$$

- The fields $s(r)$ and $E(r)$ in real space have real values.
- The Fourier transforms $S(k)$ and $E(k)$ have complex values, but their imaginary parts cancel out in the summation.

Microscopic Maxwell's Equations (in Vacuum)

- Electric field strength $\mathbf{E}(\mathbf{r})$
- Magnetic field strength $\mathbf{H}(\mathbf{r})$
- Current density $\mathbf{j}(\mathbf{r})$, charge density $\rho(\mathbf{r})$
- Permittivity of free space ε_{0}, permeability of free space μ_{0}.
$\vec{\nabla} \cdot \vec{E}=\frac{\rho}{\varepsilon_{0}}=0$
$\vec{\nabla} \cdot \vec{H}=0$
$\vec{\nabla} \times \vec{E}=-\mu_{0} \frac{\partial \vec{H}}{\partial t}$
$\vec{\nabla} \times \vec{H}=\vec{\jmath}+\varepsilon_{0} \frac{\partial \vec{E}}{\partial t}=\varepsilon_{0} \frac{\partial \vec{E}}{\partial t}$
Gauss' Law (Coulomb)
Gauss' Law (magnetic field)
Faraday's Law (Lenz)
Ampere's Law
- Homogeneous (in vacuum), linear, first-order, constant coefficients, partial DEQ.
- Vector analysis can be used (Stokes' Theorem) to transform Maxwell's equations into integral form.
- Introduce speed of light $c=\frac{1}{\sqrt{\varepsilon_{0} \mu_{0}}}$

[^1]
Wave Equations (in Vacuum)

- Electric field strength $\mathbf{E}(\mathbf{r})$; Magnetic field strength $\mathbf{H}(\mathbf{r})$.
- Maxwell's equations can be combined to obtain the vacuum wave equations (second order, linear, homogeneous, constant coefficients).

$$
\begin{aligned}
& \vec{\nabla}^{2} \vec{E}-\frac{1}{c^{2}} \frac{\partial^{2} \vec{E}}{\partial t^{2}}=0 \quad c=\frac{1}{\sqrt{\varepsilon_{0} \mu_{0}}} \\
& \vec{\nabla}^{2} \vec{H}-\frac{1}{c^{2}} \frac{\partial^{2} \vec{H}}{\partial t^{2}}=0
\end{aligned}
$$

- Plane wave solutions:

$$
\begin{aligned}
\vec{E}(\vec{r}, t) & =\vec{E}_{0} \exp [i(\vec{k} \cdot \vec{r}-\omega t)] \\
\vec{H}(\vec{r}, t) & =\vec{H}_{0} \exp [i(\vec{k} \cdot \vec{r}-\omega t)]
\end{aligned}
$$

Why are the solutions complex ?

- Plane wave is not physical (infinite, monochromatic). Form Gaussian wave packets.
- Poynting vector indicates energy flow:

$$
\vec{S}=\vec{E} \times \vec{H}
$$

[^2]
Plane-Wave Solutions to Maxwell's Equations (Vacuum)

- Electric field strength $\mathbf{E}(\mathbf{r})$; Magnetic field strength $\mathbf{H}(\mathbf{r})$.
- Any electric and magnetic field strength can be written as a Fourier-transform

$$
\begin{aligned}
& \vec{E}(\vec{r}, t)=\left(\frac{1}{2 \pi}\right)^{2} \int d \omega \iiint d^{3} \vec{k} \vec{E}(\vec{k}, \omega) \exp [i(\vec{k} \cdot \vec{r})-\omega t] \\
& \vec{E}(\vec{k}, \omega)=\left(\frac{1}{2 \pi}\right)^{2} \int d t \iiint d^{3} \vec{r} \vec{E}(\vec{r}, t) \exp [-i(\vec{k} \cdot \vec{r})-\omega t]
\end{aligned}
$$

- The Fourier transforms are complex, but the $\mathbf{E}(\mathbf{r})$ and $\mathbf{H}(\mathbf{r})$ fields are not.
- Signs: Nebraska convention as modified by Aspnes. Kinetic energy of free particle in quantum mechanics is positive. Classical wave travels along \mathbf{k}.
- The complex plane waves

$$
\begin{aligned}
& \vec{E}(\vec{r}, t)=\vec{E}_{0} \exp [i(\vec{k} \cdot \vec{r}-\omega t)] \\
& \vec{H}(\vec{r}, t)=\vec{H}_{0} \exp [i(\vec{k} \cdot \vec{r}-\omega t)]
\end{aligned}
$$

are just one term in the Fourier transform. The entire integral is real.
(Add complex conjugate.)

- Solutions to Maxwell's equations are superpositions of plane waves.

Fourier-transform Maxwell's Equations

- Substitute plane wave solutions into the differential form of Maxwell's Equations:

$$
\begin{aligned}
& \vec{\nabla} \cdot \vec{E}=0 \\
& \vec{\nabla} \cdot \vec{H}=0 \\
& \vec{\nabla} \times \vec{E}=-\mu_{0} \frac{\partial \vec{H}}{\partial t} \\
& \vec{\nabla} \times \vec{H}=\varepsilon_{0} \frac{\partial \vec{E}}{\partial t}
\end{aligned}
$$

Gauss' Law (Coulomb)
Gauss' Law (magnetic field)
Faraday's Law

Ampere's Law

$$
\begin{aligned}
& \vec{E}(\vec{r}, t)=\vec{E}_{0} \exp [i(\vec{k} \cdot \vec{r}-\omega t)] \\
& \vec{H}(\vec{r}, t)=\vec{H}_{0} \exp [i(\vec{k} \cdot \vec{r}-\omega t)]
\end{aligned}
$$

$\vec{k} \cdot \vec{E}_{0}=0$
$\vec{k} \cdot \vec{H}_{0}=0$
$\vec{k} \times \vec{E}_{0}=\omega \mu_{0} \vec{H}_{0}$
$\vec{k} \times \vec{H}_{0}=-\omega \varepsilon_{0} \vec{E}_{0}$

Gauss' Law (Coulomb)
Gauss' Law (magnetic field)
Faraday's Law
Ampere's Law

Fourier-transform Maxwell's Equations

$$
\begin{aligned}
& \vec{E}(\vec{r}, t)=\vec{E}_{0} \exp [i(\vec{k} \cdot \vec{r}-\omega t)] \\
& \vec{H}(\vec{r}, t)=\vec{H}_{0} \exp [i(\vec{k} \cdot \vec{r}-\omega t)]
\end{aligned}
$$

$\vec{k} \cdot \vec{E}_{0}=0$
$\vec{k} \cdot \vec{H}_{0}=0$
$\vec{k} \times \vec{E}_{0}=\omega \mu_{0} \vec{H}_{0}$
$\vec{k} \times \vec{H}_{0}=-\omega \varepsilon_{0} \vec{E}_{0}$
Gauss' Law (Coulomb)
Gauss' Law (magnetic field)
Faraday's Law
Ampere's Law
Wave equation (Dispersion relation)
Any solution to Maxwell's equation in vacuum can be written as a superposition of plane waves.
EM waves are transverse (\mathbf{E}, \mathbf{H} perpendicular to \mathbf{k}).
$\mathbf{E} \perp \mathbf{H}, \mathrm{E}_{0}=\mathrm{Z}_{0} \mathrm{H}_{0}, \mathrm{Z}_{0}=\sqrt{ }\left(\mu_{0} / \varepsilon_{0}\right)=377 \Omega$ impedance of vacuum.

Polarized Light; Jones Vectors

$$
\vec{E}(\vec{r}, t)=\vec{E}_{0} \exp [i(\vec{k} \cdot \vec{r}-\omega t)]
$$

- Select \mathbf{k} along the \mathbf{z}-axis. Then two field components E_{x} and E_{y} are sufficient.

$$
\vec{E}(\vec{r}, t)=\binom{E_{0 x}}{E_{0 y}} \exp [i(k z-\omega t)]
$$

- An EM wave is described by seven (7) real quantities:
- Direction of wave vector (two angles ϕ and θ).
- Magnitude of wave vector (and angular frequency).
- Two complex amplitudes $\mathrm{E}_{0 \mathrm{x}}$ and $\mathrm{E}_{0 \mathrm{y}}$ (Jones vector).
- One of these (absolute phase) cannot be measured; leaving six parameters.

$$
\binom{E_{0 x}}{E_{0 y}}=E_{0}\binom{X \exp i \Delta_{X}}{Y \exp i \Delta_{Y}}=E_{0}\binom{\sin \psi \exp i \Delta}{\cos \psi} \exp i \Delta_{y}
$$

- We don't care about the light intensity and the absolute phase.
- ψ and Δ are called the ellipsometric angles; describe polarization of wave.
- $\psi=\arctan (X / Y) ; \Delta=\Delta_{X}-\Delta_{Y} ; \rho=\tan \psi \exp (i \Delta)$;
J. Humlicek, in Tompkins \& Irene (Handbook of Ellipsometry)

Stefan Zollner, February 2019, Optical Properties of Solids Lecture 3

Linear polarization oriented at 45°

Right-circular polarization

elliptical
$\left[\begin{array}{c}\sin \psi \exp (\mathrm{i} \Delta) \\ \cos \psi\end{array}\right]$

$$
\begin{gathered}
-\pi \leq \Delta \leq \pi \\
0 \leq \psi \leq \pi / 2
\end{gathered}
$$

Polarized Light; Jones Vectors

The polarization state of polarized light can be described with two parameters ψ and Δ called ellipsometric angles.

Polarization Ellipse

$$
\vec{E}(z=0, t)=E_{0}\binom{\sin \psi \exp i \Delta}{\cos \psi} \exp [-i \omega(t-\tau) t]
$$

At $z=0$, the electric field vector traces out an ellipse.

Parameters of the ellipse:

- Azimuth ϑ
- Ratio tany major/minor axis Ellipticity e=tan $\gamma=\mathrm{B} / \mathrm{A}$ can be calculated from ψ, Δ.
J. Humlicek

Representation of Polarized Light by Complex Numbers

$$
\vec{E}(z=0, t)=E_{0}\binom{\sin \psi \exp i \Delta}{\cos \psi} \exp [-i \omega(t-\tau) t]
$$

Optical Elements,

Mica sheet, Prism (VIS/UV), wire grid (IR), metallic mirrors (VUV)
Compensator/retarder:
Quarter-wave plate

$$
\Delta=\frac{2 \pi}{\lambda}\left|n_{e}-n_{o}\right| \mathrm{d}=\frac{\pi}{2}
$$

Stefan Zollner, February 2019, Optical Properties of Solids Lecture 3

Decoherence and Depolarization

$$
\vec{E}(\vec{r}, t)=\vec{E}_{0} \exp [i(\vec{k} \cdot \vec{r}-\omega t)]
$$

In practice, light sources are superpositions with several frequencies, called wave packets.
Similarly, light sources have mixed polarization states.

Coherent Laser Light

Incoherent LED Light

LED: one color (monochromatic) and waves not in phase (non-coherent)

LASER: One color (monochromatic) and waves in phase (coherent)

Stokes Parameters

$$
\begin{array}{ll}
\vec{E}(\vec{r}, t)=\vec{E}_{0} \exp [i(\vec{k} \cdot \vec{r}-\omega t)] \\
S_{0}=I_{x}+I_{y}=E_{x} E_{x}^{*}+E_{y} E_{y}^{*} & \text { Total intensity } \\
S_{1}=I_{x}-I_{y}=E_{x} E_{x}^{*}-E_{y} E_{y}^{*} & \text { S-polarized minus p-polarized } \\
S_{2}=I_{45^{\circ}}-I_{-45^{\circ}}=E_{x} E_{y}^{*}+E_{x}^{*} E_{y} & \text { Diagonal difference } \\
S_{3}=I_{R}-I_{L}=2 \operatorname{Re}\left(E_{x}^{*} E_{y}\right) & \text { Right minus left circular } \\
0 \leq p=\frac{\sqrt{S_{1}^{2}+S_{2}^{2}+S_{3}^{2}}}{S_{0}} \leq 1 & \text { Degree of Polarization (\%) } \\
\tan (2 \vartheta)=\frac{S_{2}}{S_{1}} & \begin{array}{l}
\text { The Stokes parameters are related to } \\
\text { the azimuth } \vartheta \text { and ellipticity } \gamma \text { of the } \\
\text { polarization ellipse. }
\end{array} \\
\tan (2 \gamma)=\frac{S_{3}}{\sqrt{S_{1}^{2}+S_{2}^{s}}} &
\end{array}
$$

Poincare Sphere

The Stokes parameters for completely polarized light, taken as coordinates, define
S_{2} a point in/on a sphere.

Poles: Circularly polarized
Equator: Linearly polarized

Partially Polarized Light

(a) Totally polarized light
(b) Partially polarized light
(c) Unpolarized light

Totally polarized light: point in the Poincare sphere.
Partially polarized light: region in the sphere.

Jones Matrix

Optical element	Corresponding Jones matrix
Linear polarizer with axis of transmission horizonta[${ }^{[1]}$	$\left(\begin{array}{cc}1 & 0 \\ 0 & 0\end{array}\right)$
Linear polarizer with axis of transmission vertica[${ }^{[1]}$	$\left(\begin{array}{cc}0 & 0 \\ 0 & 1\end{array}\right)$
Linear polarizer with axis of transmission at $\pm 45^{\circ}$ with the horizonta[${ }^{[1]}$	$\frac{1}{2}\left(\begin{array}{cc}1 & \pm 1 \\ \pm 1 & 1\end{array}\right)$

Quarter-wave plate with fast axis vertical[2][note 1]

$$
\frac{e^{\frac{i \pi}{4}}\left(\begin{array}{cc}
1 & 0 \\
0 & -i
\end{array}\right)}{e^{-\frac{i \pi}{4}}\left(\begin{array}{ll}
1 & 0 \\
0 & i
\end{array}\right)}
$$

Quarter-wave plate with fast axis horizontal ${ }^{[2]}$

Half-wave plate with fast axis at angle θ w.r.t the horizontal axis ${ }^{[3]}$

$$
e^{-\frac{i \pi}{2}}\left(\begin{array}{cc}
\cos ^{2} \theta-\sin ^{2} \theta & 2 \cos \theta \sin \theta \\
2 \cos \theta \sin \theta & \sin ^{2} \theta-\cos ^{2} \theta
\end{array}\right)
$$

Ellipsometry Measurement (simplified)

Polarization State Jones Vector

$$
J=\binom{E_{0 x}}{E_{0 y}}
$$

Ellipsometry Experiment
$J_{\text {out }}=\left(\begin{array}{ll}r_{p p} & r_{p s} \\ r_{s p} & r_{s s}\end{array}\right) J_{\text {in }}$
Fresnel reflection coefficients

Isotropic surface:
Off-diagonal elements vanish.

$$
\left(\begin{array}{ll}
r_{p p} & r_{p s} \\
r_{s p} & r_{s s}
\end{array}\right)=r_{s s}\left(\begin{array}{ll}
\rho & 0 \\
0 & 1
\end{array}\right)
$$

Ellipsometry: How does it work?

Fresnel Reflectance ratio
$\stackrel{\downarrow}{\rho}=\frac{R_{p}}{R_{s}}=\frac{E_{r p}}{E_{i p}} \cdot \frac{E_{i s}}{E_{r s}}=\tan \Psi e^{i \Delta}$
$\widetilde{\varepsilon}=\sin ^{2} \phi\left[1+\tan ^{2} \phi \cdot\left(\frac{1-\rho}{1+\rho}\right)^{2}\right]$
Angle of incidence

Result:

$$
\widetilde{\varepsilon}=\varepsilon_{1}+i \varepsilon_{2}
$$

Optical constants versus photon energy

We measure the change in the polarization state of light, when it is reflected by a flat surface (bulk).

Monochromator or
Interferometer (λ)
polarizer

Buik sample

Ellipsometry Instrumentation

Mueller Matrix Ellipsometry

Polarization State Stokes Vector

$$
S=\left(\begin{array}{l}
S_{0} \\
S_{1} \\
S_{2} \\
S_{3}
\end{array}\right)
$$

Ellipsometry Experiment

$$
S_{\text {out }}=\widehat{M} S_{\mathrm{in}}
$$

$$
\widehat{M}=\left(\begin{array}{llll}
M_{00} & M_{01} & M_{02} & M_{03} \\
M_{10} & M_{11} & M_{12} & M_{13} \\
M_{20} & M_{21} & M_{22} & M_{23} \\
M_{30} & M_{31} & M_{32} & M_{33}
\end{array}\right) \quad \begin{aligned}
& \text { Measures anisotropy and depolarization } \\
& \text { Requires two rotating compensators } \\
& \text { Beetles, cancer research, magnetic field }
\end{aligned}
$$

Mueller Matrices

Isotropic sample, no depolarization

$\mathbf{J}_{\text {sample }}=\left[\begin{array}{cc}r_{p} & 0 \\ 0 & r_{s}\end{array}\right]$
$\mathbf{M}_{\text {sample }}=\left[\begin{array}{cccc}1 & -N & 0 & 0 \\ -N & 1 & 0 & 0 \\ 0 & 0 & C & S \\ 0 & 0 & -S & C\end{array}\right]$

$$
\begin{aligned}
& N=\cos (2 \psi) \\
& S=\sin (2 \psi) \sin (\Delta) \\
& C=\sin (2 \psi) \cos (\Delta) \\
& N^{2}+S^{2}+C^{2}=1
\end{aligned}
$$

Standard ellipsometry:

- Thickness measurements of thin films
- Optical functions of isotropic materials
$\rho=\left(\rho_{\text {real }}+i \rho_{\text {inag }}\right)=\frac{r_{p}}{r_{s}}=\tan (\psi) e^{i \Delta}=\frac{C+i S}{1+N}$
This Mueller matrix depends only on 2
parameters

Summary

- Fourier series and Fourier transforms
- Plane waves
- Maxwell's Equations in vacuum (general and plane-wave format)

Non-polarized wave

- Polarized light
- Jones and Stokes vectors
- Polarization ellipse
- Poincare sphere

- Ellipsometry experiments
- Jones and Mueller matrices

[^0]: Jackson, E\&M, 1975

[^1]: Jackson, E\&M, 1975

[^2]: Jackson, E\&M, 1975

