Optical Properties of Solids: Lecture 7

Stefan Zollner

New Mexico State University, Las Cruces, NM, USA and Institute of Physics, CAS, Prague, CZR (Room 335) <u>zollner@nmsu.edu</u> or <u>zollner@fzu.cz</u>

These lectures were supported by

- European Union, European Structural and Investment Funds (ESIF)
- Czech Ministry of Education, Youth, and Sports (MEYS), Project IOP Researchers Mobility – CZ.02.2.69/0.0/0.0/0008215

Thanks to Dr. Dejneka and his department at FZU.

EUROPEAN UNION European Structural and Investment Funds Operational Programme Research, Development and Education

NSF: DMR-1505172

http://ellipsometry.nmsu.edu

- **Optical Properties of Solids: Lecture 7+8**
- Electronic Band Structure Direct and indirect band gaps Empty lattice, pseudopotential, k.p band structures
- Optical interband transitions, Fermi's Golden Rule Absorption coefficient for direct and indirect gaps Tauc plot
- Van Hove singularities

References: Band Structure and Optical Properties

Solid-State Theory and Semiconductor Band Structures:

- Mark Fox, Optical Properties of Solids
- **Ashcroft and Mermin, Solid-State Physics**
- Yu and Cardona, Fundamentals of Semiconductors
- Dresselhaus/Dresselhaus/Cronin/Gomes, Solid State Properties
- **Cohen and Chelikowsky, Electronic Structure and Optical Properties**
- Klingshirn, Semiconductor Optics
- **Grundmann, Physics of Semiconductors** •
- loffe Institute web site: NSM Archive http://www.ioffe.ru/SVA/NSM/Semicond/index.html

Outline

Band structure and Bloch's theorem
Examples: Si, Ge, AI, Cu, SrTiO₃
Free-electron approximation
Nearly free electron gas
Empirical and ab initio pseudopotential methods
k.p theory band structure method
Effective masses, valence band warping, Luttinger parameters

Band Structure: Where did this come from?

Crystal symmetry: **Translational + point group symmetry**.

Translational symmetry results in **Bloch's Theorem**.

$$\vec{T}\psi(\vec{r}) = \psi\left(\vec{r} + \vec{T}\right) = e^{i\vec{k}\cdot\vec{T}}\psi(\vec{r})$$

$$\psi(\vec{r}) = e^{i\vec{k}\cdot\vec{r}}u_{n,\vec{k}}(\vec{r})$$

Representations of cyclic groups are one-dimensional generated by primitive lattice vectors. The characters are the roots of unity.

Energy and wave vector are good quantum numbers. For each **k**, we label the bands from lower to higher energies. This results in band structure $E_n(\mathbf{k})$, for **k** in Brillouin zone.

Band Structure: Where did this come from?

Examples of Band Structures: Si and Ge

Total Energy: E=K+V, $K=p^2/2m$, p=0 corresponds to Γ -point in BZ. Four valence electrons per atom: $3s^2$, $3p^2$ (8 e⁻ per cell) Symmetry labels are representations from the point group.

Examples of Band Structures: Al and Cu

Wave vector **k**

Three valence electrons: 3s², 3p¹ No d-electrons. 3p band only half full. (This must be a metal). Noble metal Cu, Ag, Au: s-band half full (metal) d-bands completely full. Not ferromagnetic (paired d-electron spins).

Examples of Band Structures: SrTiO₃

Direct and indirect transitions

Direct transition:

Initial and final electron state have **same** wave vector.

Indirect transition:

Initial and final electron state have **different** wave vector.

http://www.ioffe.ru/SVA/NSM/Semicond/index.html

Free-electron approximation (empty lattice: V=0)

Free-electron approximation (empty lattice: V=0)

Bands are folded at edges of Brillouin zone.

Yu & Cardona, Fundamentals of Semiconductors H. Jones, Theory of Brillouin Zones (1975)

Free-electron approximation for FCC lattice

Bands are folded at edges of Brillouin zone.

Wave functions are plane waves (calculated matrix elements).

Note point group symmetry notations.

Yu & Cardona, Fundamentals of Semiconductors H. Jones, Theory of Brillouin Zones (1975)

NM State

of Solids Lecture 7

Free-electron approximation for FCC lattice

Free-electron approximation: bcc, fcc, hcp lattices

Nearly free electron gas (weak potential)

81

C

 $2|U_{\rm K}|$

H = T + U

Assume that U is very small.

Non-degenerate states are not affected much (second order in U). Bands repel each other.

$$E(\vec{k}) = E^{0}_{\vec{k}-\vec{K}_{1}} + \sum_{\vec{k}} \frac{\left|U_{\vec{K}-\vec{K}_{1}}\right|^{2}}{E^{0}_{\vec{k}-\vec{K}_{1}} - E^{0}_{\vec{k}-\vec{K}}} + O(V^{3})$$

Degeneracies are lifted. Gaps open, especially near the BZ boundary.

Ashcroft&Mermin, Chapter 9

Nearly free electron gas (weak potential)

Crystal potential as pseudopotential

Coulomb potential diverges for r=0. Replace with "soft-core" pseudopotential. Only need to know V(g) for a few points. Calculate band structure with empirical pseudopotential (EPM) method. Requires diagonalization of 59x59 matrix.

Yu & Cardona, Fundamentals of Semiconductors

Crystal potential as pseudopotential

Empirical pseudopotential method

Self-consistent pseudopotential method

 V_{g} \downarrow $V(\mathbf{r}) = \sum_{g} V_{g} \exp(-i\mathbf{g} \cdot \mathbf{r})$ \downarrow $H = (p^{2}/2m) + V(\mathbf{r})$ Solve $H\psi_{k}(\mathbf{r}) = E_{k}\psi_{k}(\mathbf{r})$ to obtain $\psi_{k}(\mathbf{r})$ and E_{k} \downarrow Calculate reflectivity, density of states, etc., and compare with experiments \downarrow Alter V_{g} if agreement between theory and experiment is not satisfactory.

Guess V(g) Calculate band structure Compare with experimental results. **Adjust V(g) until good agreement.** Single-electron equation. Diagonalization of a matrix works for s- and p-electrons (not d-electrons).

```
Choose V(r)

\downarrow

Solve (H + V)\psi = E\psi

\downarrow

Calculate charge density \varrho = \psi^*\psi

\downarrow

Solve \nabla^2 V_{\text{Hartree}} = 4\pi \varrho \left(\frac{1}{4\pi\epsilon_0}\right)

\downarrow

Calculate V_{\text{xc}} = f[\varrho(r)]

\downarrow

V_{\text{sc}} = V_{\text{Hartree}} + V_{\text{xc}}

\downarrow

Model structure V_{\text{ion}} \rightarrow V = V_{\text{sc}} + V_{\text{ion}}
```

Start with atomic pseudopotential V Calculate band structure Calculate charge density ρ Include many-body effects (LDA) **Replace V and start over.** No experimental input needed.

Yu & Cardona, Fundamentals of Semiconductors Cohen & Bergstresser, Phys. Rev. **141**, 789 (1966)

Pseudopotential (EPM) band structures for Ge, GaAs

Bands cross: different symmetries. Dirac point: Linear dependence on k Inversion symmetry leads to crossing.

Bands repel: same symmetry. Anti-crossing due to interactions. No degeneracy at the X-point.

k p theory (band structure method)

Schrödinger equation

$$H\Phi_{n\vec{k}} = \left(\frac{\vec{p}^2}{2m} + V\right)\Phi_{n\vec{k}} = E_{n\vec{k}}\Phi_{n\vec{k}}$$

Use Bloch's theorem:

$$\Phi_{n\vec{k}}(\vec{r}) = e^{i\vec{k}\cdot\vec{r}}u_{n\vec{k}}(\vec{r})$$
Product rule
$$(fg)'' = f''g + 2f'g' + fg''$$

$$\left(\frac{\vec{p}^2}{2m} + \frac{\hbar^2 \vec{k}^2}{2m} + \frac{\hbar \vec{k} \cdot \vec{p}}{m} + V\right) u_{n\vec{k}} = E_{n\vec{k}} u_{n\vec{k}}$$

Solve equation for **k**=0. **Then treat red terms in perturbation theory.** Works very well for semiconductors with local V(**r**) potentials.

Yu & Cardona, Fundamentals of Semiconductors

k·p theory: Effective mass of a non-generate band

$$\left(\frac{\vec{p}^2}{2m} + \frac{\hbar^2 \vec{k}^2}{2m} + \frac{\hbar \vec{k} \cdot \vec{p}}{m} + V\right) u_{n\vec{k}} = E_{n\vec{k}} u_{n\vec{k}}$$

Solve for k=0 (at Γ). Linear terms in k vanish (extremum). Treat red terms in perturbation theory (up to second order).

$$\begin{split} u_{n\vec{k}} &= u_{n\Gamma} + \frac{\hbar}{m} \sum_{n' \neq n} \frac{\langle u_{n\Gamma} | \vec{k} \cdot \vec{p} | u_{n'\Gamma} \rangle}{E_{n\Gamma} - E_{n'\Gamma}} u_{n'\Gamma} \\ E_{n\vec{k}} &= E_{n\Gamma} + \frac{\hbar^2 k^2}{2m} + \frac{\hbar^2}{m^2} \sum_{n' \neq n} \frac{\left| \langle u_{n\Gamma} | \vec{k} \cdot \vec{p} | u_{n'\Gamma} \rangle \right|^2}{E_{n\Gamma} - E_{n'\Gamma}} = E_{n\Gamma} + \frac{\hbar^2 k^2}{2m^*} \\ \frac{1}{m^*} &= \frac{1}{m} + \frac{2}{m^2 k^2} \sum_{n' \neq n} \frac{\left| \langle u_{n\Gamma} | \vec{k} \cdot \vec{p} | u_{n'\Gamma} \rangle \right|^2}{E_{n\Gamma} - E_{n'\Gamma}} \quad \text{Effective mass comes from band-band interactions.} \end{split}$$

k p theory: Application to electron band at Γ $\frac{1}{m^*} = \frac{1}{m} + \frac{2}{m^2 k^2} \sum_{n' \neq n} \frac{\left| \left\langle u_{n\Gamma} \middle| \vec{k} \cdot \vec{p} \middle| u_{n'\Gamma} \right\rangle \right|^2}{E_{n\Gamma} - E_{n'\Gamma}}$ Γ_8^+ Keep only the largest term:

Momentum matrix element: $iP = \langle X | p_x | \Gamma_1 \rangle = \langle Y | p_Y | \Gamma_1 \rangle = \langle Z | p_z | \Gamma_1 \rangle$

	Ge	GaN	GaAs	GaSb	InP	InAs	ZnS	ZnSe	ZnTe	CdTe
$E_0 [eV]$	0.89	3.44	1.55	0.81	1.34	0.45	3.80	2.82	2.39	1.59
$m_c^*/m (exp)$	0.041	0.17	0.067	0.047	0.073	0.026	0.20	0.134	0.124	0.093
$m_c^*/m ((2.44))$	0.04	0.17	0.078	0.04	0.067	0.023	0.16	0.14	0.12	0.08

Stefan Zollner, February 2019, Optical Properties of Solids Lecture 7

 $m_{\rho}^* \propto E_0$

Yu & Cardona, Fundamentals of Semiconductors

k·p theory: Application to valence bands at Γ Valence band maximum Γ_{25} ': Spherical harmonics (L=1)

$$|lm_l\rangle = \begin{cases} |11\rangle = -(X+iY)/\sqrt{2} \\ |10\rangle = Z \\ |1-1\rangle = (X-iY)/\sqrt{2} \end{cases}$$

Include spin 1/2: J=L+S, j=1/2,3/2

$$|jm_{j}\rangle = -\begin{bmatrix} 3/2, 3/2 \rangle = |1, 1\rangle \alpha \\ 3/2, 1/2 \rangle = (1/\sqrt{3})(|1, 1\rangle\beta + \sqrt{2}|1, 0\rangle\alpha) \\ 3/2, -1/2 \rangle = (1/\sqrt{3})(|1, -1\rangle\alpha + \sqrt{2}|1, 0\rangle\beta) \\ 3/2, -3/2 \rangle = |1, -1\rangle\beta \\ -\begin{bmatrix} 1/2, 1/2 \rangle = (1/\sqrt{3})(|1, 0\rangle\alpha - \sqrt{2}|1, 1\rangle\beta) \\ 1/2, -1/2 \rangle = (1/\sqrt{3})(|1, 0\rangle\beta - \sqrt{2}|1, -1\rangle\alpha) \end{bmatrix}$$

Momentum matrix element:
$$iQ = \langle X|p_{y}|\Gamma_{15c}(z)\rangle = \langle X|p_{z}|\Gamma_{15c}(x)\rangle$$

14 by 14 matrix (p, s*, p*)

k·p theory: Application to valence bands at Γ Momentum matrix elements: $iP = \langle X | p_x | \Gamma_1 \rangle = \langle Y | p_Y | \Gamma_1 \rangle = \langle Z | p_z | \Gamma_1 \rangle$ $iQ = \langle X | p_y | \Gamma_{15c}(z) \rangle = \langle X | p_z | \Gamma_{15c}(x) \rangle$ $\frac{m_0}{m_{so}^*} = 1 - \frac{2}{3} \left| \frac{P^2}{m_0(E_0 + \Delta_0)} + \frac{2Q^2}{m_0(E_0' + \Delta_0)} \right|$ Inverse effective mass parameters A, B, C: $\frac{2m}{\hbar^2}A = 1 - \frac{2}{3} \left| \left(\frac{P^2}{mE_0} \right) + \left(\frac{2Q^2}{mE'_0} \right) \right|$ $m_{hh,lh}^{-1} = A \pm |B| \sqrt{1 + C^2 / 5B^2}$ Also Luttinger parameters $\frac{2m}{\hbar^2}B = \frac{2}{3}\left[\left(\frac{-P^2}{mE_0}\right) + \left(\frac{Q^2}{mE_0'}\right)\right]$ $\gamma_1 = -A, \quad \gamma_2 = -B/2,$ $\gamma_3 = \sqrt{(B^2/4) + (C^2/12)}$ $\left(\frac{2m}{\hbar^2}C\right)^2 = \frac{16P^2Q^2}{3mE_0mE_0'}.$ $E_{\text{lh,hh}} = -Ak^2 \pm \sqrt{B^2k^4 + C^2(k_x^2k_y^2 + k_y^2k_z^2 + k_z^2k_x^2)}$ Yu & Cardona, Fundamentals of Semiconductors

Stefan Zollner, February 2019, Optical Properties of Solids Lecture Dresselhaus, Kip, Kittel, Phys. Rev. 98, 368 (1955)

k·p theory: Application to valence bands at Γ

	A	В	$\mid C \mid^2$	⊿ 0	$m_{\rm hh}/m_0$		$m_{\rm lh}/m_0$		$m_{\rm so}/m_0$	
				[eV]	exp	th	exp	th	exp	th
C ^b	-2.5	0.2	4.6	0.013 ^a		0.66 ^e		0.29 ^e		0.39 ^b
Si ^e	-4.28	-0.68	24	0.044	0.54	0.50	0.15	0.15	0.23	0.24
Ge	-13.38	-8.5	173	0.295	0.34	0.43	0.043	0.041	0.095	0.1
SiC ^c	-2.8	-1.016	5.8	0.014		0.6		0.25		0.36
GaN ^d	-5.05	-1.2	34	0.017		0.5^{e}		0.13 ^e		0.2
GaP ^e	-4.05	-0.98	16	0.08	0.57	0.51	0.18	0.16		0.25
GaAs	-6.9	-4.4	43	0.341	0.53	0.73	0.08	0.08	0.15	0.17
GaSb	-13.3	-8.8	230	0.75	0.8	0.98	0.05	0.04		0.15
InP ^e	-5.15	-1.9	21	0.11	0.58	0.44	0.12	0.11	0.12	0.2
InAs	-20.4	-16.6	167	0.38	0.4	0.4	0.026	0.026	0.14	0.10
InSb	-36.41	-32.5	43	0.81	0.42	0.48	0.016	0.013		0.12
ZnS	-2.54	-1.5		0.07						
ZnSe	-2.75	-1.0	7.5	0.43		1.09		0.145		
ZnTe	-3.8	-1.44	14.0	0.93						
CdTe	-4.14	-2.18	30.3	0.92						

NIN

Yu & Cardona, Fundamentals of Semiconductors

Stefan Zollner, February 2019, Optical Properties of Solids Lecture Dresselhaus, Kip, Kittel, Phys. Rev. 98, 368 (1955)

Valence Band Warping

Semiconductor Band Structures

Direct transition:

Initial and final electron state have **same** wave vector.

Indirect transition:

Initial and final electron state have **different** wave vector.

http://www.ioffe.ru/SVA/NSM/Semicond/index.html

Summary

- Band structure and Bloch's theorem
 - Examples: Si, Ge, Al, Cu, SrTiO₃
- **Free-electron** approximation
- Nearly free electron gas
- Empirical and ab initio pseudopotential methods
- **k**.**p** theory band structure method
- Effective masses, valence band warping, Luttinger parameters

