Program pro rok 2016

Zpět na hlavní stránku Semináře ÚT

 
28. 12. 2016, 11:00

Modelling of lotus-type porous structures: bi- and multi- axial loading

Assoc. prof. dr. Matjaž Šraml, University of Maribor, Slovenia

A computational modelling of the low-cycle fatigue behaviour of lotus-type porous material subjected to multiaxial loading cycles is presented. The considered computational models have the same porosity but different pore topology patterns. Multiaxial loading conditions in the direction perpendicular to the longitudinal axis of pores are assumed to be proportional (in-phase) and non-proportional (out-of-phase) loading paths in numerical simulation. The fatigue life analysis is performed using a damage initiation and evolution law, based on the inelastic strain energy approach. The computational results show that a different fatigue life is obtained in the models with the same porosity but with different pore topology at the same loading level. Furthermore, the results of computational simulations show a qualitative understanding of the loading path on low-cycle fatigue failures of lotus-type porous material under multiaxial loading conditions.
 





 




 
7. 12. 2016, 10:00

Iron. Static and "dynamic" phase diagrams and transformation kinetics.

prof. Eugene B. Zaretsky, Department of Mechanical Engineering, Ben Gurion University, Beer Sheva, Israel

Our civilization is closely acquainted with iron for some 4500 years, iron polymorphism is known for some 100 years, and it is some 50 years since the iron static phase (P,T) diagram has been established with reasonable accuracy.

The talk describes some recent experimental results aimed to establishing the borders of existence of iron phases when the iron is compressed by shock. Such "dynamic" phase diagram is found to differ strongly from the static one, i.e. the shock-generated metastable phase can subsist for a time longer than the experiment duration (microseconds) while the time required for the phase formation (transformation kinetics) is extremely short, few tens of nanoseconds.
 





 




 
9. 11. 2016, 10:00

Regularizované modely pro materiály se změkčením

prof. Ing. Milan Jirásek, DrSc., Stavební fakulta ČVUT v Praze

Pro mnoho materiálů dochází v jisté fázi přetvárného procesu k šíření a spojování již existujících defektů a vzniku nových. Pokud je rozvoj defektů dostatečně dramatický, může z makroskopického hlediska nastat pokles zprůměrovaného napětí při rostoucí deformaci. Tento jev, označovaný jako změkčení (softening), je jedním z destabilizujících faktorů, které za určitých okolností způsobují lokalizaci nepružného přetváření do úzkých pásů. Objektivní popis lokalizované deformace v rámci mechaniky kontinua vyžaduje speciální úpravy materiálových modelů, protože při použití klasických modelů je tloušťka lokalizovaných pásů libovolně malá a numerické řešení pak vykazuje patologickou závislost na diskretizaci (například na velikosti použitých konečných prvků).
V přednášce podáme přehled nejrůznějších regularizačních technik, které mohou být použity jako tzv. omezovače lokalizace. Vzhledem k jejich rozmanitosti bude analýza lokalizovaných řešení provedena pouze pro modelovou úlohu v jedné prostorové dimenzi. Ukážeme, jaké regularizační postupy jsou vhodné pro pružnoplastické modely se změkčením a jaké pro modely poškození (damage models). Provedeme porovnání podmínek lokalizace a vzniklých lokalizovaných profilů plastické deformace či poškození, včetně jejich následného vývoje. Přitom objasníme, proč jisté konkrétní formulace založené na nelokálním průměrování nebo na přidání gradientních členů fungují jako spolehlivé omezovače lokalizace, zatímco jiné selhávají nebo trpí různými neduhy.





 




 
5. 10. 2016, 10:00

Experimentální studium a simulace lokalizované transformace v materiálech s tvarovou pamětí

Ing. Petr Sedlák, Ph.D., Ústav termomechaniky AV ČR, v.v.i

Martenzitická transformace, jež stojí za nevšedními vlastnostmi slitin s tvarovou pamětí, neprobíhá vždy v těchto slitinách homogenně. V určitých režimech zatěžování se tato transformace vzorkem šíří nehomogenně, ve formě makroskopických pásů. Otázka jak a proč k této lokalizaci v polykrystalických materiálech dochází, trápí jak teoretiky, tak i inženýry, neboť lokalizovaná transformace nejen značně mění mechanickou odezvu těchto materiálů, ale především negativně ovlivňuje jejich únavové vlastnosti. V unikátním experimentu realizovaném na synchrotronu v ESRF se podařilo s využitím metody 3D rentgenové difrakce (3D-XRD) zmapovat stavy napjatosti v polykrystalických zrnech mikrometrických rozměrů v okolí čela deformačního pásu. Ukázala se jak výrazná heterogenita napětí na úrovni jednotlivých zrn daná anizotropií jejich elastických a transformačních vlastností, tak i dramatické přerozdělení makroskopických (homogenizovaných) napětí v okolí rozhraní. Analýza těchto výsledků umožnila adaptaci konstitutivního modelu popisujícího chování materiálů s tvarovou pamětí, především zahrnutí tzv. nelokálních, gradientních efektů. Numerická rekonstrukce šířícího se rozhraní pak objasnila mechanizmus postupného přerozdělování vnitřních napětí, a tím vysvětlila podstatu lokalizované deformace v NiTi.





 




15. 9. 2016, 10:00

Vliv mezní vrstvy na směšování horkých volných proudů

Ing. Jana Lepičovský, DrSc, Ústav termomechaniky AV ČR, v.v.i

Hlavní motivací výzkumu byla pasivní ochrana letounu proti tepelně řízeným střelám. Úkolem bylo snížit teplotu výstupního horkého proudu z motoru rychlým mísením s okolím bez jakékoliv ztráty tahu proudového motoru. První fáze se soustředila na objasnění rychlostních charakteristik volných proudů a ukázala, že vybuzováním a zvyšováním teploty proudu se zvýší intenzita směšování. V druhé fázi byly analyzovány nesrovnalosti v odezvě horkých volných proudů na buzení a vyšetřena úloha výstupní mezní vrstvy z trysky při směšování. Závěrem bylo prokázáno, že příčný rychlostní gradient výstupní mezní vrstvy je dominantním faktorem rozhodujícím o intenzitě směšování volných proudů s okolím. Během práce na tomto úkolu byla zdokonalena metoda vysokofrekvenčního stroboskopického zviditelňování periodických struktur v proudění. Dále byla vypracována a ověřena metoda podmíněného vzorkování náhodných signálů laserového anemometru.





 




17. 8. 2016, 10:00

Rotation-free parametrization and isogeometric analysis of shear deformable plates and shells

Prof. Dr.-Ing. habil. Manfred Bischoff,  Institut für Baustatik und Baudynamik, Universität Stuttgart

Structural theories for static and dynamic analysis of shear deformable plates and shells (Reissner-Mindlin type) usually employ independent degrees of freedom for displacements and rotations. It is shown how equivalent models can be developed based on displacement degrees of freedom only. In the context of finite element formulations this has the advantage that transverse shear locking can be intrinsically avoided within a standard displacement-based concept, regardless of the underlying function spaces used for discretization.

As in this context higher continuity of the shape functions is required, a natural way is to incorporate such theories into the isogeometric concept, using NURBS (non-uniform rational B-splines) as shape functions. Corresponding shear-deformable shell finite element formulations for geometrically linear and non-linear applications are presented and their performance is demonstrated with the help of numerical examples.




 
2. 6. 2016, 10:00

Matematika tekutin v pohybu

Prof. RNDr. Eduard Feireisl, DrSc. Matematický ústav, AV ČR, v.v.i.

 

Budeme se zabývat současným vývojem matematické teorie pohybu tekutin, klasickými i novými otevřenými problémy a možnostmi jejich řešení. Zaměříme se zejména na úlohy spojené s řešitelností a jednoznačnou závislosti na datech pro úlohy nevazkého proudění. Budeme též diskutovat různé moderní přístupy k řešením: Slabá, velmi slabá i řešení v mírách.




 
4. 5. 2016, 10:00

Vývoj umělých hlasivek člověka

Ing. Jaromír Horáček, DrSc., Ústav termomechaniky, AV ČR, v.v.i.

 

Hlas člověka je složitý fyzikální proces, který zahrnuje proudění vzduchu přicházejícího z plic, samobuzené kmitání hlasivek a akustiku rezonančních prostor vokálního traktu člověka. Hlasivky buzené proudem vzduchu generují primární zvuk, který se šíří vzduchovými kavitami vokálního traktu, které modifikují spektrum tohoto signálu, a vytvářejí konečnou podobu akustického signálu vyzařovaného z úst člověka do okolního prostoru. Porozumění základním principům tvorby hlasu
člověka je důležité pro detekci patologických poruch a léčení onemocnění hrtanu. Fyzikální modely fonace jsou důležitým nástrojem nejen pro verifikaci současně vytvářených výpočtových 3D MKP modelů, ale i pro vývoj hlasových protéz. Prezentace zahrnuje porovnání výsledků měření fonačních charakteristik in vitro prováděných na originálně vyvíjených modelech lidských hlasivek v měřítku 1:1. Naměřené aerodynamické, vibrační a akustické charakteristiky nejnovějších modelů jsou srovnatelné s hodnotami naměřenými v lidských hlasivkách.




 
6. 4. 2016, 10:00

Stochastická samoorganizace vnitřní struktury dopravních systémů

doc. Mgr. Milan Krbálek, Ph.D., Fakulta jaderná a fyzikálně inženýrská, ČVUT v Praze, Katedra matematiky

 

Studium dopravních systémů je velice mladou vědeckou disciplínou. Za první vědecký článek se všeobecně pokládá studie profesora Bruce Greenshieldse z roku 1934. Za faktický počátek systematické vědní disciplíny nazývané v anglické literatuře Transportation Science se pak pokládá rok 1992, kdy tento obor zaznamenal prudký nárůst zájmu a kdy vyšly přelomové publikace oboru. V dnešní době je Transportation Science již velice dobře ukotvena v portfóliu vědeckých disciplín (její aktuální oborový medián je 1,377 impaktního bodu). Z celé šíře dopravní problematiky je pro účely semináře vybráno téma predikce statistických vlastností dopravního proudění a odhalení zajímavých zákonitostí v dopravní mikrostruktuře.

V příspěvku ukážeme, že se makroskopická samoorganizace dopravního proudu (např. spontánní vytvoření dopravní kongesce) promítá do adekvátních změn stochastických vlastností dopravních mikroveličin a že existuje velmi hezký a nepříliš komplikovaný způsob, jak tyto mikroskopické efekty samoorganizace predikovat.




 
2. 3. 2016, 13:30

Létání živých tvorů (ptáci, hmyz, člověk?)

Ing. Rudolf Dvořák, DrSc., Ústav termomechaniky, AV ČR, v.v.i.

 

Létat znamená vytvořit sílu, která vyrovná sílu tíže (vztlak), a sílu, která uvede toto těleso do pohybu atmosférou a udělí mu potřebnou rychlost (tah). Aby mohl vzniknout vztlak na tělese s pevnými křídly (např. letadle) musí být těleso uvedeno do pohybu vůči okolnímu prostředí nějakou vnější silou,pohonnou jednotkou, která vytvoří potřebný tah. Letci ze živočišné říše jsou odkázáni jen sami na sebe. Aby mohli létat, musí mít pohyblivá křídla, která kromě toho, že vytvářejí potřebný vztlak, vytvářejí i tah, a dostatečný svalový výkon.

Aby vznikl vztlak (síla, která při letu směřuje od Země) musí křídlo udělit tekutině hybnost směřující dolů (tj. k Zemi). Podle principu akce a reakce je pak vztlak reakcí tekutiny na tuto sílu a směřuje nahoru (tj. od Země). Podobně je tomu u jakéhokoli pohybu živočichů v tekutinách (např.ve vodě). Docílit toho lze různými způsoby, např. odkloněním proudu obtékaným profilem, nebo tím, že pohyblivým křídlem (stejně tak i pádlem) vytvoříme vírovou dvojici, která udělí tekutině hybnost směřující dolů pod letící objekt. V přednášce je tento mechanizmus popsán jak pro ptačí křídla (mávající křídla), tak pro křídla hmyzu (kmitající křídla).

Popsána bude i stavba křídel ptáků a hmyzu a různé jejich úpravy používané pro okamžité zvýšení vztlaku, nebo zvládnutí různých letových situací (např. let na místě, start nebo přistání, únik před predátorem, let mezi překážkami, aj.).




 
3. 2. 2016, 10:00

FLUIDICKÉ OSCILÁTORY PRO PĚSTOVÁNÍ VODNÍCH ŘAS.
Mohou snad nějak ovlivnit světovou politickou rovnováhu?

prof. Ing. Václav Tesař, CSc., Ústav termomechaniky, AV ČR, v.v.i.

Naše civilizace je v současnosti extrémně závislá na levném kapalném palivu pro dopravu. Ještě zhruba do konce 19. stol. lidé pracovali přímo tam. kde bydleli. Dnes se v ohromných počtech dopravují do zaměstnání. Také zboží se dopravuje stovky a tisíce kilometrů od výrobců k prodejcům a pak ke spotřebitelům. Tento model nyní ještě přebírají nejlidnatější rozvojové země, Čína a Indie. Fosilní zdroje, na nichž to vše závisí, se těží za stále rostoucí cenové náklady v politicky nejistých oblastech. Není divu, že grantové agentury v západních zemích jsou ochotny financovat myšlenky na obnovitelný benzin. Východiskem jsou právě řasy — primitivní, často jen jednobuněčné rostliny schopné z vody a CO2 ve vzduchu produkovat fotosyntézou uhlovodíkové sloučeniny. Z těch pak není principiální problém produkovat biopaliva — ostatně nafta právě takto z řas kdysi vznikala. Navíc by nenarůstalo v atmosféře CO2 jako skleníkový plyn a tím by se zastavilo globální oteplování. Řasy také nakonec mohou být i výchozím článkem potravinového řetězce.

Potíž je zatím v tom, že z řas syntetizované palivo vychází dražší než z fosilních zdrojů. Klíčovým faktorem je zefektivnění každého kroku z nichž proces sestává. Jedním z drobných ale podstatných příspěvků je efektivnější difúzní transport CO2 do vody v bioreaktorech. Ukazuje se, že cestou je tvorba submilimetrových mikrobublin, která je dosažena zařazením fluidického oscilátoru do přívodu plynu. V probíhajícím grantovém projektu byla podrobně zkoumána řada alternativních oscilátorů.




 
6. 1. 2016, 10:00

Galerkinova metoda pro řešení dynamické elasticity, stlačitelného proudění a interakce tekutin a struktur

Prof. RNDr. Miloslav Feistauer, DrSc., Dr.h.c, Katedra numerické matematiky, Matematicko-fyzikální fakulta Univerzity Karlovy, Praha

Přednáška je věnována numerickému řešení problémů dynamické elasticity a stlačitelného proudění. Uvažujeme lineární pružnost a nelineární St. Venantův-Kirchhoffův model. Prostorová diskretizace je realizována pomocí nespojité Galerkinovy metody. Pro časovou diskretizaci bylo navrženo a testováno několik technik. Jako nejpřesnější se ukazuje časoprostorová nespojitá Galerkinova metoda. Tato metoda byla rovněž aplikována na řešení problému stlačitelného proudění v časově závislých oblastech formulovaného pomocí tzv. ALE (arbitrary Lagrangian-Eulerian) metody. Bude ukázáno, že tato metoda umožňuje řešení stlačitelného proudění s velkým rozsahem Machova čísla. Vyvinuté metody byly aplikované na numerickou simulaci vibrací elastických struktur indukovaných stlačitelným prouděním. Použitelnost těchto metod bude demonstrována ukázkami numerických experimentů.

Výsledky byly získány ve spolupráci s následujícími spolupracovníky: M. Balázsová, J. Česenek, M. Hadrava, A. Kosík a J. Horáček.


 


Zpět na hlavní stránku Semináře ÚT



Footer menu

© 2008 – 2018 Ústav termomechaniky AV ČR, v. v. i.     Facebook  YouTube  RSS