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Abstract. The existence of anti-periodic solutions is studied for a second order difference
inclusion associated with a maximal monotone operator in Hilbert spaces. It is the discrete
analogue of a well-studied class of differential equations.
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1. INTRODUCTION

We are concerned with the second order difference inclusion

(L1) { Uirr — (L 4+ 0)u; + 0iuim1 € c;Au; + fi, 1<i< N

Up = —UN+1, U1 — Up = —an(UN+1 — UN),

where A is a nonlinear (possibly multivalued) maximal monotone operator in a real
Hilbert space H, 0;, ¢; > 0 and f; € H (1 < i < N) are given finite sequences, and
an =1/60102...0N. Denote by D(A) the domain of A.

The inclusion from (1.1) is the discrete variant of the continuous differential in-
clusion pu” + ru’ € Au+ f a.e. on [0,7] that has been intensely studied. See for
example the papers [9], [1] and the monograph [8]. Anti-periodic solutions for such a
class of differential equations were investigated in [2], [4], while the discrete analogue
for p =1, r = 0 was treated in [5]. In this case §; = 1. In [10], the authors study
the asymptotic behavior of the bounded solution for the second order on half-axis.
Existence and asymptotic behavior results for equation (1.1) for ¢ > 1 and various
boundary conditions have been obtained in [7]. For finite sets of ¢ (1 <4 < N), in [6]
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the authors analyzed the continuous dependence of the solution on the operator A,
the sequence f; and the boundary conditions ug = a, un41 = b.

The structure of the paper is the following. In the next section we find some
auxiliary results related to the maximal monotonicity of the operator

(1.2) Bu = {(—uit1 + (1 + 0;)u; — 0;u;—1)1<i<n }

with the domain

(1.3) D(B) ={u = (u;)1<i<N, o = —UN+1, U1 —Up = —an(unt1 — un)}-
Denoting by A the operator

(1.4) Au = {(c1v1,...,envn), v € Aug, 1 <i< N}, D(A) = D(A)Y,

problem (1.1) can be written as —f € (A+ B)(u), f = (f1,..., fn).

Section 3 is devoted to the existence of the solution of the boundary value problem
(1.1). The main result of the paper is established here and an application to PDE is
presented.

Recall that if A is maximal monotone and if Jy, = (I+AA)~%, Ay = (I—J))/) are
its resolvent and its Yosida approximation, respectively, then x = Jyz+AA xz, Ayx €
A(Jxx). Properties of maximal monotone operators can be found in [8].

In [3], [11] the authors studied second-order boundary value problems for discrete
inclusions and applied the fixed-point techniques and a priori bound methods to
obtain the existence of solutions. However, in these papers the boundary conditions
are of Dirichlet type and so do not apply directly to the problem herein.

2. AUXILIARY RESULTS

Note that, if A is maximal monotone in H, then A from (1.4) is maximal monotone
in HY = H x ... x H (N times). We study now the maximal monotonicity of B in
the Hilbert space HY endowed with the scalar product

N
(2-1) <(uz)1<z<N, Zaz m,vz
=1

Here (+,-) is the scalar product in H and a; is given by

2.2 1 a4 = 7
(2.2) o ="5 @i=gTy
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Observe that
(23) a;0; = ai—1, 1<i<N+1.
This Hilbert space is equivalent to H" endowed with the scalar product ((u;)1<i<n,

N
(vi)1i<ign) = Y (ui,v;). The only difference between the two Hilbert spaces is that
i=1
the operator B introduced in (1.2)-(1.3) is monotone only in H”" with the scalar
product (2.1). To show this, we begin with the existence results for the auxiliary

boundary value problems, with ¢,d € R given:

(2.4) lisi— (2+0); +0:li_1 =0, 1<i<N,
lo=c¢, Iny1=—c,
(2.5) miy1 — (24+60;)m; +0;m;—1 =0, 1<i<N,
m1 —mgy = and, myy1 —my = —d.

Lemma 2.1. Ifc € R and ¢;, 6; > 0, 1 < i < N, problem (2.4) has a unique
solution | = (li)1<i<n € RY. Moreover, we can choose ¢ such that I, — lg +
aN(ZN+1 — lN) 75 0.

Proof. Problem (2.4) has the form (6.1.13) from [8], page 143. Applying
Theorem 6.1.2 in [8], one deduces that (2.4) admits a unique solution ! = (I;)1<i<n €
R™. Let Iy = ¢ and I; € R be fixed. Then we can compute la, I3, . .. ,IN+1 in terms
of [;. By the boundary condition Iy11 = —c¢, we find I = ¢[261(2+62)—1]/(8+461+
205+26105). Then we can choose ¢ such that the condition I; —lp+an(In+1—In) # 0
is satisfied.

Lemma 2.2. Let d < 0 be given and let ¢;, §; > 0, 1 < i < N. Then problem
(2.5) admits a unique solution m = (m;)i1gi<N € RY. In addition, we can choose
d < 0 such that my +mpy41 # 0.

Proof. Let mg € R be arbitrary fixed. Then m; = mg 4+ ayd and from (2.5)
we infer that m; = a;mg + G;, 1 < @ < N, with a; > 0,8; > 0, ;41 —a; > 0
and B; — Biy1 —d > 0 (if d < 0) for 1 < ¢ < N. By the boundary condition
my+1—mpy = —d, one obtains mg = (By — n+1 —d)/(an+1 — an). This mg exists
and is positive. In addition, we can easily find that

(By = Bn+1—d) —dany1 + any188 — Byion

Mo + MmN +1 = QN+1 — QN >0,
41—

because anyi1 —ay > 0, By — Bny1 —d > 0 and anyi1088 — Oy+ian =
—0105 ...0nand = —d > 0. The lemma is proved.
Now we can prove the maximal monotonicity of the operator B from (1.2) — (1.3).
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Proposition 2.3. The operator B defined in (1.2)—(1.3) is maximal monotone in
the weighted Hilbert space H" with the scalar product (2.1).

Proof. To prove that B is monotone with respect to the scalar product (2.1),
let uw = (u;)1<i<n, v = (v;)1<ign be two sequences in the domain D(B) of B and let
wi = ai—1(u; —ui—1), ¥i = ai—1(v; —vi—1), 1 < i < N. In view of (1.2), (1.3) and
(2.3), we can write

N

(B(u) = B(v),u—v) ==Y (pir1 = i = Yig1 + i, u; — v)

i=1

N N
= ZaiHUiH — i = vig1 +vil|* - Z(%‘ — i, Uit1 — U — Vi1 + V)
i=1 i=1
N
- Z(%‘H — @i = Yit1 + Yis Uig1 — Vig1)
i=1
N
= ZaiHuiJrl — u; — vig1 + v
i=1
N
+ Z[(%‘ — i, u; — ;) — (Pit1 — Yit1, Yit1 — Vit1)]
i=1

N
= Z%HWH —wi — vig1 + vil|? + (w1 — uo — v1 + vo, ur — v1)
=1
—an(UNt1 — UN — UN41 + UN, UNF1 — UNF1)-

Since u,v € D(B), one obtains

N
(B(u) = B(v),u —v) = ZaiHqu — i — g1+ vil|? A+ Jur — uo —v1 +ol]? = 0.

=1

Thus B is monotone in H with the scalar product (2.1).

We now prove that B is maximal monotone, i.e. R(B+ I) = H (see Minty’s
Theorem 1.4.13, [8]). Therefore, for every sequence (h;)1<i<n € HY, we are looking
for u = (u;)1<i<ny € HY such that

(26) Ujy1 — (2 + 91)“1 4+ 0;ui—1 = h;, 1 <i <N,

Up = —UN+1, UL — Up = —aN(UN+1 — UN)-
We search the solution of (2.6) in the form
(2.7) w; =v; +lix+myy, 1<i<N,
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where z,y € H and l;, m;, v; are solutions of the boundary value problems (2.4),
(2.5) and

(2.8) Vig1 — (2+60)v;i +0;vi_1 =h;, 1<i<N

v0:0, 1)1:0,

respectively. The sequence u; in (2.7) verifies the equation from (2.6) for all z,y € H.
The boundary conditions from (2.6) become

(lo + Ing1)x + (mo + my41)y = —Un41,

[l1 —lo+an(nt+1 —IN)]z + [m1 —mo + an(myi1 — my)]y = —an(Vn+1 — UN).

Lemmas 2.1 and 2.2, together with the boundary conditions from (2.4), (2.5),
guarantee the existence and uniqueness of z,y € H:

—an(UvN+1 — UN) —UN+1

L=l tan(ns1 —In)’ Y mo+mny1

Hence B is maximal monotone with respect to the scalar product (2.1).

3. THE MAIN RESULT

In this section we establish the existence of a solution to the boundary value
problem (1.1). The main ingredient of the proof is Proposition 2.3.

Theorem 3.1. Assume that A: D(A) C H — H is maximal monotone in H,
0€ D(A), 0;,¢;, >0, fie H 1 <i<N,ay =1/60105...0y. Then the boundary
value problem (1.1) has a unique solution u = (u;)1<i<n € D(A)N.

Proof. Denote by Ay = (I —(I+XA)"1)/Xand Ay = (I — (I +XA)"1)/) the
Yosida approximations of the operators A and A, respectively. Recall that A defined
through (1.4) is maximal monotone in H”. Since A, is also maximal monotone and
everywhere defined and B is maximal monotone with respect to the scalar product
(2.1), the sum .4 + B is maximal monotone. Consequently, the operator Ay +B+wI
is surjective for every w > 0, i.e. for any sequence f = (fi)1<i<ny € HY, the problem

(3.1)  wly — (1+0,)u} + 0ud?) = c; Au) +wu) + f;, 1<i <N,

Aw Aw Aw Aw Aw Aw
up® = —upty, urY —up? = —an(uniy —uy’)

has a unique solution u** = (Ug\w)lgigN € HV.
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Step 1. We first prove the boundedness with respect to A and w of the sequence
A Without loss of generality, we suppose that 0 € A0. Otherwise, we replace A by
A=A—A% and f; by f; = fi + ¢;A°0, where A%z is the element of the minimum

norm of the set Az.

Aw

One multiplies (3.1) by a;u?* and sums up from i =1 to ¢ = N. Using (2.3) and

the monotonicity of Ay, we get

WY allu||? < Z upy = u up) = aia (U =y u)]

i=1

_Za’i—luu? _uz 1”2 Zat ftv )\w.
i=1

This implies that

WZ%IIUMH“GNIIUNH *“’H”Zaz Ll — w1
i=1 i=1

N 1/2 , N 1/2
< (Salsl?) (SalR)
i=1 i=1

Hence we have obtained that
N N
(32) D allu P < Ky, Y aiallu}” —ud|® < Ko, [lupty, —uy’l < Ks,

where K1, Ko, K3 and all K; below are positive constants. By (3.1) we find also that
(3.3) |Ayu|| < K4, 1<i<N.

Step 2. We now show that u** is strongly convergent in H~ as A \, 0, for every
fixed w. To do this, we subtract (3.1) for A and for p and multiply this difference by
az( M — uéw)

that

. Summing up from i = 1 to i = N and employing (2.3), we derive

N N
WY aillu} = ufP Y ai ) =l =+l

i=1
<an (Ui, —uhe | —up’ 4+ uh  une — uh)
X UN\YUN+1 N+1 N N UN N
Aw pw pw ) Aw
— (u)® —uf — up® + uf”, g — uh®)

N
Aw Hw Aw Hw
+E a;ci(Axup? — Ayul™, Hhu” — J,ul™)
i=1

N
+ Z aici(Ayu} — A ub®, Myu) — A k).

i=1
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Since A is monotone and Az € A(Jyz), we have via (3.3)

N N
WY aillu}? — w1+ ai e = ul = ud + |
=1 =1
+an|lun’y — ul'yy — un +uly [P < Ks(A+ p).

This estimate shows the strong convergence as A \, 0 of the sequences u}* and

ud —ud, 1 < i < N. Let u} — v¥ as A\, 0. Since A u}* is bounded with
respect to A and w, it is weakly convergent on a subsequence, say A u}* — w¥ as
AN 0in H. Then Jyu} = u)” — A u} — v¥ as A\, 0. Passing to the limit as
AN 0in Ayu € A(Jyu) and in (3.1), one finds that v¢ € D(A), w¥ € Av¥ and

(3.4) v — (L4 0:)v7 + 007 1 € ciAvf +wouf + fi, 1 <i<N,

vo =~y Y — 5 = —an (Vi — R)-
The solution of this problem is bounded because of (3.2):

(3.5) |[vf]] < Kg, 1 <4< N.
Step 3. We prove that vy —v ; is strongly convergent asw — 0,1 <7 < N +1.
To this end, by (3.4) for w and v and by the monotonicity of A we deduce that

N
an 0541 = VRegr — 0K X [P+ Daialfoy — o] — oy ol P
i=1

N
<@+ aici(vf,v]) < Kr(w+7).
=1

This shows the desired strong convergence. Writing (3.4) in the form

vy —vf = 0;(vf — v ) —wyf — fi € AV, 1<i< N
and employing the maximal monotonicity of A together with the weak convergence
of v¢¥ (say v¥ — u;), 1 <4 < N, it follows that u; € D(A) and u = (u;)1<ign verifies
the problem (1.1). The uniqueness can be easily obtained. This completes the proof.

An example. Denote by Q C R, d > 1 a bounded domain with the boundary
08 smooth enough. Let §: D(8) C R — R be a maximal monotone, densely
defined operator in R, and let A be the operator Au = —Awu with the domain
D(A) = {u € H*(Q), —0u/0n € B(u) a.e. on IQ}, where 9/0n is the outward normal
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derivative. It is known that this operator is maximal monotone in the Hilbert space
H = L*(Q) (see for example [8]). As a consequence of Theorem 3.1, we can state
the following existence result for the boundary value problem

wip1(x) — (1 + 0)ui(z) + Ojui—1 () = —c;Aui(x) + fi(z), z€Q, 1<i<N
—0u;(x)/0n € B(ui(x)), x €N

uo(z) = —uns1(x), wi(z) —uwo(z) = —anjunsi(z) —un(z)], =€ Q.

Proposition 3.2. Let 8: D(8) C R — R be a maximal monotone densely defined
operator on R such that 0 € 5(0), f; € H = L*(Q), ¢;,0; > 0,1 <i < N. Then the
above boundary value problem has a unique solution u = (u;)1<i<n € D(A)N.
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