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Abstract. For a nontrivial connected graph G of order n, the detour distance D(u, v)
between two vertices u and v in G is the length of a longest u − v path in G. Detour
distance is a metric on the vertex set of G. For each integer k with 1 6 k 6 n−1, a coloring
c : V (G) → N is a k-metric coloring of G if |c(u) − c(v)| + D(u, v) > k + 1 for every two

distinct vertices u and v of G. The value χk
m(c) of a k-metric coloring c is the maximum

color assigned by c to a vertex of G and the k-metric chromatic number χk
m(G) of G is the

minimum value of a k-metric coloring of G. For every nontrivial connected graph G of order
n, χ1m(G) 6 χ2m(G) 6 . . . 6 χn−1

m (G). Metric chromatic numbers provide a generalization
of several well-studied coloring parameters in graphs. Upper and lower bounds have been
established for χk

m(G) in terms of other graphical parameters of a graph G and exact values
of k-metric chromatic numbers have been determined for complete multipartite graphs and
cycles. For a nontrivial connected graph G, the anti-diameter adiam(G) is the minimum
detour distance between two vertices of G. We show that the adiam(G)-metric chromatic
number of a graph G provides information on the Hamiltonian properties of the graph and
investigate realization results and problems on this parameter.
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1. Introduction

By the Four Color Theorem, the regions of every map can be colored with four or

fewer colors so that every two adjacent regions (regions sharing a common boundary)

are assigned distinct colors. However, if a mapM contains a large number of regions,

then to make the map look more attractive, it may be advantageous to use several

more colors to color the regions. One disadvantage of this approach, however, is

that if many colors are used, then it is likely that some pairs of colors, even though

different, are similar and may appear to be indistinguishable at a casual glance. One
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solution to this problem is to allow regions to be assigned the same or similar colors

only when these regions are sufficiently far apart.

With each mapM , there is associated a dual planar graphG whose vertices are the

regions of M and where two vertices of G are adjacent if the corresponding regions

of M are adjacent. If we use positive integers as the colors, we then assign colors i

and j to distinct vertices u and v of G depending on the distance d(u, v) between u

and v (the length of a shortest u − v path in G). In particular, we could agree to

assign colors i and j to u and v only if |i − j| + d(u, v) > k + 1 for some prescribed

positive integer k. This gives rise to a coloring of the vertices of the graph G that is

sometimes called a k-radio coloring, introduced in [1].

More formally, for a connected graph G having diameter diam(G) = d (the largest

distance between two vertices of G) and an integer k with 1 6 k 6 d, a k-radio

coloring of G is an assignment c of colors (positive integers) to the vertices of G such

that

(1) |c(u) − c(v)| + d(u, v) > k + 1

for every two distinct vertices u and v of G. The value rck(c) of a k-radio coloring c

of G is the maximum color assigned to a vertex of G by c and the k-radio chromatic

number rck(G) of G is defined as rck(G) = min{rck(c)}, where the minimum is taken

over all k-radio colorings c of G. In fact, 1-radio colorings are ordinary proper color-

ings, 2-radio colorings are the much studied L(2, 1)-colorings, d-radio colorings are

radio labelings (see [1]), and (d− 1)-radio colorings are antipodal colorings (see [2]).

Thus k-radio colorings provide a generalization of these colorings in graphs.

The term “radio coloring” emanates from another interpretation of coloring the

vertices of a graph, namely from the Channel Assignment Problem, which is the

problem of obtaining an optimal assignment of channels to a specified set of ra-

dio transmitters according to some prescribed restrictions on the distances between

transmitters as well as other factors, including their effective radiated power and an-

tenna heights. The use of graph theory to study the Channel Assignment Problem

and related problems dates back at least to 1970 (see Metzger [21]). In 1980, Hale

[16] modeled the Channel Assignment Problem as both a frequency-distance con-

strained and frequency constrained optimization problem and discussed applications

to important real world problems. Since then, a number of graph colorings have been

inspired by the Channel Assignment Problem (see [3], [10]–[15], [17]–[19], [25]–[28]

for example).

Radio colorings of graphs gave rise to other colorings of graphs defined in terms

of another distance parameter. The detour distance D(u, v) between two vertices u

and v in a connected graph G is the length of a longest u− v path in G. Thus if G is
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a connected graph of order n, then d(u, v) 6 D(u, v) 6 n−1 for every two vertices u

and v in G and D(u, v) = n − 1 if and only if G contains a Hamiltonian u − v path.

Furthermore, d(u, v) = D(u, v) for every two vertices u and v in G if and only if G is

a tree. As with standard distance, the detour distance is a metric on the vertex set

of a connected graph. For a nontrivial connected graph G of order n and an integer

k with 1 6 k 6 n − 1, a coloring c : V (G) → N is called a k-metric coloring of G if

(2) |c(u) − c(v)| + D(u, v) > k + 1

for every two distinct vertices u and v of G. Therefore, a k-metric coloring of a

tree T is, in fact, a k-radio coloring of T . The value χk
m(c) of a k-metric coloring

c is the maximum color assigned by c to a vertex of G and the k-metric chromatic

number χk
m(G) of G is the minimum value of a k-metric coloring of G, that is,

χk
m(G) = min{χk

m(c)} where the minimum is taken over all k-metric colorings c of

G. A k-metric coloring c of G whose value equals χk
m(G) is a minimum k-metric

coloring of G. Since every k-radio coloring of a graph G is a k-metric coloring of G,

it follows that χk
m(G) 6 rck(G) and equality holds if G is a tree.

For a connected graph G of order n > 3 and an integer k with 1 6 k 6 n − 2,

every (k + 1)-metric coloring is a k-metric coloring and so

(3) χ1
m(G) 6 χ2

m(G) 6 . . . 6 χn−1
m (G).

The concept of k-metric coloring provides a generalization of two other colorings

in literature. An (n − 2)-metric coloring of G is a Hamiltonian coloring which was

introduced in [7] and studied further in [5], [8], [22], [23] for example, while an (n−1)-

metric coloring is a Hamiltonian labeling, which was introduced in [29] and studied

further in [24], [30].

We now present some preliminary and useful information on k-metric colorings

of graphs. For a nontrivial connected graph G, the diameter diam(G) of G is the

maximum value of the minimum length of a u − v path in G for all u, v ∈ V (G).

That is,

diam(G) = max
u,v∈V (G)

{the minimum length of a u − v path in G}.

So the diameter of a graph is a max-min concept. If we reverse this order and

consider the corresponding min-max concept

min
u,v∈V (G)

{the maximum length of a u − v path in G},

then we obtain the anti-diameter adiam(G) of G. Thus adiam(G) is the minimum

detour distance between two vertices of G. If G is a nontrivial connected graph
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of order n, then 1 6 adiam(G) 6 n − 1. Furthermore, adiam(G) = 1 if and only

if G contains a bridge and adiam(G) = n − 1 if and only if G is Hamiltonian-

connected (that is, every two vertices of G are connected by a Hamiltonian path).

If H is a connected spanning subgraph of a nontrivial graph G, then dG(u, v) 6

dH(u, v) 6 DH(u, v) 6 DG(u, v) for every two distinct vertices u and v and so

diam(G) 6 diam(H) while adiam(H) 6 adiam(G). We are prepared to present two

useful observations.

Observation 1.1. If H is a connected spanning subgraph of a nontrivial graph G

of order n, then χk
m(G) 6 χk

m(H) for 1 6 k 6 n− 1. In particular, if T is a spanning

tree of G, then χk
m(G) 6 χk

m(T ) = rck(T ) for 1 6 k 6 n − 1.

Observation 1.2. Let G be a nontrivial connected graph of order n and k an

integer with 1 6 k 6 n − 1. Then χk
m(G) = 1 if and only if adiam(G) > k + 1.

By Observation 1.2, χ1
m(G) = 1 if and only if adiam(G) > 2, that is, χ1

m(G) = 1

if and only if G is a connected graph without a bridge (or G is 2-edge-connected).

Furthermore, if G contains a bridge e, then e belongs to every spanning tree T of G.

Since a proper 2-coloring of T is a 1-metric coloring of G, it follows that χ1
m(G) = 2.

Therefore,

(4) χ1
m(G) =

{

1 if G is bridgeless,

2 otherwise.

We have seen in (3) that if G is a nontrivial connected graph of order n, then

{χk
m(G)}n−1

k=1 is a nondecreasing sequence of positive integers. Furthermore, χ
k
m(G) >

2 if and only if k > adiam(G). It was shown in [29] that if G is a nontrivial connected

graph of order n, then χn−1
m (G) > n and χn−1

m (G) = n if G is Hamiltonian. Therefore,

if G is a Hamiltonian graph of order n, then

{χk
m(G)}n−1

k=1 : 1 = a1, a2, a3, . . . , an−2, an−1 = n,

where 1 6 a2 6 a3 6 . . . 6 an−2 6 n (if n > 4) and, in particular, G is Hamiltonian-

connected if and only if

{χk
m(G)}n−1

k=1 : 1, 1, . . . , 1, n.

To illustrate these concepts, we consider the k-metric chromatic number of the

Petersen graph P of order 10 for each integer k with 1 6 k 6 9. Observe that for

two distinct vertices u and v of P ,

D(u, v) =

{

8 if uv ∈ E(P ),

9 if uv /∈ E(P ).
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Thus adiam(P ) = 8. Since it was shown in [24] that χ8
m(P ) = 3 and χ9

m(P ) = 10,

we have

{χk
m(P )}9

k=1 : 1, 1, 1, 1, 1, 1, 1, 3, 10.

We refer to the book [4] for graph theory notation and terminology not described in

this paper. We assume that all graphs under consideration are connected.

2. Bounds for k-metric chromatic numbers

It is convenient to introduce some notation. For a k-metric coloring c of a nontrivial

connected graph G of order n, an ordering v1, v2, . . . , vn of the vertices of G is called

a c-ordering of G if

1 = c(v1) 6 c(v2) 6 . . . 6 c(vn) = χk
m(c).

Observe that if χk+l
m (G) = 1 for some positive integers k and l, then χk

m(G) = 1 by

(3). When χk+l
m (G) > 2, we have the following.

Theorem 2.1. Let G be a connected graph of order n > 3 and k an integer

with 1 6 k 6 n − 2. Then χk+l
m (G) 6 χk

m(G) + l(n − 1) for each positive integer

l 6 n − k − 1. Furthermore, if χk+l
m (G) > 2, then χk+l

m (G) > χk
m(G) + l.

P r o o f. In order to verify that χk+l
m (G) 6 χk

m(G) + l(n − 1) we show that

χk+1
m (G) 6 χk

m(G) + n − 1. Let c be a minimum k-metric coloring of G. Then

(5) |c(u) − c(v)| + D(u, v) > k + 1

for every two distinct vertices u and v of G. Suppose that v1, v2, . . . , vn is a c-ordering

of the vertices of G, where then 1 = c(v1) 6 c(v2) 6 . . . 6 c(vn) = χk
m(G). Define a

coloring c′ of G by c′(vi) = c(vi) + i − 1 for 1 6 i 6 n. Hence

(6) 1 = c′(v1) 6 c′(v2) 6 . . . 6 c′(vn) = χk
m(G) + n − 1.

For two distinct vertices vi and vj of G, where say 1 6 i < j 6 n, it then follows by

(5) and (6) that

|c′(vi) − c′(vj)| + D(vi, vj) = [(c(vj) + j − 1] − [c(vi) + i − 1] + D(vi, vj)

= c(vj) − c(vi) + D(vi, vj) + (j − i)

> k + 2.
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Thus c′ is a (k + 1)-metric coloring of G. Therefore, χk+1
m (G) 6 χk

m(c′) = χk
m(G) +

n − 1 and the result follows by induction.

Next, we show that χk+l
m (G) > χk

m(G) + l if χk+l
m (G) > 2. It suffices to show

that χk+1
m (G) > χk

m(G) + 1 when χk+1
m (G) > 2. Let c be a minimum (k + 1)-metric

coloring of G and let v1, v2, . . . , vn be a c-ordering of the vertices of G, where then

1 = c(v1) 6 c(v2) 6 . . . 6 c(vn) = χk+1
m (G).

Since χk+1
m (G) > 2, there is a largest integer p with 1 6 p 6 n − 1 such that

c(vp) < c(vn). Hence c(vp+1) = c(vp+2) = . . . = c(vn). Define a coloring c′ of G by

c′(vi) =

{

c(vi) if 1 6 i 6 p,

c(vi) − 1 if p + 1 6 i 6 n.

Observe that v1, v2, . . . , vn is also a c′-ordering of the vertices of G. To see that

c′ is a k-metric coloring of G, let vi and vj be two distinct vertices of G, where

say 1 6 i < j 6 n. If j 6 p or i > p + 1, then |c′(vi) − c′(vj)| + D(vi, vj) =

c(vj)− c(vi)+D(vi, vj) > k +1; otherwise, |c′(vi)− c′(vj)|+D(vi, vj) > [c(vj)− 1]−

c(vi) + D(vi, vj) > k + 1. Thus c′ is a k-metric coloring of G, as claimed. Therefore,

χk
m(G) 6 c′(vn) = c(vn) − 1 = χk+1

m (G) − 1. �

By Theorem 2.1, for every connected graph G of order n > 3 and for each k with

adiam(G) 6 k 6 n − 1, it follows that

(7) 1 6 χk
m(G) − χk−1

m (G) 6 n − 1.

Since for trees the k-metric chromatic number equals the k-radio chromatic number,

χk
m(K1,n−1) = (k − 1)(n − 1) + 2

for 1 6 k 6 n− 1 (see [9]). Hence, the upper bound in (7) is sharp for every possible

value of k. On the other hand, the following result was established in [29].

Theorem 2.2 [29]. For every connected graph G of order n > 3

χn−2
m (G) + 2 6 χn−1

m (G) 6 χn−2
m (G) + (n − 1)

and both bounds are sharp.

Thus, there is no connected graphG of order n > 3 such that χn−1
m (G)−χn−2

m (G) =

1. That is,

(8) χk
m(G) − χk−1

m (G) >

{

1 if adiam(G) 6 k 6 n − 2,

2 if k = n − 1

and the bound is sharp, which we discuss next.
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It was shown in [7], [29] that χn−1
m (Cn) = n and χn−2

m (Cn) = n− 2 for each n > 3.

Hence, χn−1
m (Cn) − χn−2

m (Cn) = 2 for each n > 3. Also, there is a connected graph

G of order n > 4 such that χk
m(G)−χk−1

m (G) = 1 for adiam(G) 6 k 6 n− 2. To see

this, let G = K2 +
(

K⌈n/2⌉−1 ∪ K⌊n/2⌋−1

)

and let x and y be the two vertices having

degree n − 1. Then

D(u, v) =

{

⌈n/2⌉ if {u, v} = {x, y},

n − 1 otherwise.

Therefore, adiam(G) = ⌈n/2⌉ and χk
m(G) = 1 for 1 6 k 6 ⌈n/2⌉ − 1. Furthermore,

the coloring c : V (G) → {1, 2} such that c(v) = 2 if and only if v = x is an ⌈n/2⌉-

metric coloring of G. Hence, χ
⌈n/2⌉
m (G) = 2. In fact, the coloring ck : V (G) →

{1, k − ⌈n/2⌉ + 2} such that c(v) = k − ⌈n/2⌉ + 2 if and only if v = x is a k-metric

coloring of G for ⌈n/2⌉ 6 k 6 n − 2. It then follows by Theorem 2.1 that

χ⌈n/2⌉
m (G) = k − ⌈n/2⌉ + 2

for ⌈n/2⌉ 6 k 6 n − 2. Finally, χn−1
m (G) = n since G is Hamiltonian. Thus,

{χk
m(G)}n−1

k=1 :











1, 2, 4 if n = 4,

1, 1, 2, 5 if n = 5,

1, 1, . . . , 1, 2, 3, . . . , ⌊n/2⌋, n if n > 6.

Observe that C4 and K4 − e attain the lower bounds in (8) for every k with

adiam(G) 6 k 6 n − 1. Whether there is a connected graph G of order n > 5 that

attain the lower bounds in (8) for every k with adiam(G) 6 k 6 n− 1 is not known.

Combining (4) and Theorems 2.1 and 2.2, we obtain the following corollary.

Corollary 2.3. For every connected graph G of order n > 3 and a = adiam(G) 6

k 6 n − 1,

χk
m(G) >

{

k − a + 2 if k 6 n − 2,

max{n − a + 2, n} if k = n − 1

and

χk
m(G) 6

{

(k − a + 1)(n − 1) + 1 if a > 2,

(k − 1)(n − 1) + 2 if a = 1.

In [7], [30], sharp upper bounds for the Hamiltonian chromatic number and Hamil-

tonian labeling number of a connected graph G were given in terms of the order n

of G, namely,

1 6 χn−2
m (G) 6 (n − 3)(n − 1) + 2,

n 6 χn−1
m (G) 6 (n − 2)(n − 1) + 2.
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It was also shown that each of the upper bounds is attained if and only if G is a star

while each of the lower bounds is attained if and only if G is Hamiltonian-connected.

We next present an improved upper bound as well as a lower bound for χk
m(G) where

adiam(G) 6 k 6 n − 1. In order to do this, we present an additional definition. For

a nontrivial connected graph G of order n with a = adiam(G) and an integer k with

a 6 k 6 n− 1, let Gk be the graph such that V (Gk) = V (G) and uv ∈ E(Gk) if and

only if DG(u, v) 6 k. Let χ(G) denote the chromatic number of a graph G.

Theorem 2.4. For a nontrivial connected graph G of order n with adiam(G) = a

and an integer k with a 6 k 6 n − 1,

(k − a + 1)
[

χ(Ga) − 1
]

+ 1 6 χk
m(G) 6 (k − a + 1)

[

χ(Gk) − 1
]

+ 1.

P r o o f. We first verify the upper bound. Let c0 : V (Gk) → {1, 2, . . . , χ(Gk)} be

a proper χ(Gk)-coloring of Gk and consider the coloring c : V (G) → N of G defined

by c(v) = (k−a+1) [c0(v) − 1]+1 for every v ∈ V (G). We show that c is a k-metric

coloring of G. Let u, v ∈ V (G). We may also assume that DG(u, v) 6 k. Observe

that uv ∈ E(Gk), implying that c0(u) 6= c0(v). Hence,

|c(u) − c(v)| + DG(u, v) = (k − a + 1)|c0(u) − c0(v)| + DG(u, v)

> (k − a + 1) · 1 + a = k + 1.

Therefore, χk
m(G) 6 χk

m(c) = (k − a + 1)
[

χ(Gk) − 1
]

+ 1.

For the lower bound, suppose that c is an arbitrary k-metric coloring of G with

χ = χk
m(c). Then V (G) can be partitioned into the sets V1, V2, . . . , V⌈χ/(k−a+1)⌉ such

that for each i

Vi = {v ∈ V (G) : (i − 1)(k − a + 1) + 1 6 c(v) 6 i(k − a + 1)}.

Therefore, if two vertices u and v belong to Vi for some i, then |c(u) − c(v)| <

k − a + 1, implying that DG(u, v) > a + 1. Hence, uv /∈ E(Ga), that is, each Vi

is an independent set in Ga. This in turn implies that χ(Ga) 6 ⌈χ/(k − a + 1)⌉.

Therefore, χ > (k − a + 1)
[

χ(Ga) − 1
]

+ 1, which completes the proof. �

The following is an immediate consequence of Theorem 2.4.
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Corollary 2.5. If G is a nontrivial connected graph with adiam(G) = a, then

χa
m(G) = χ(Ga).

3. Two well-known classes of graphs

In this section, we determine the k-metric chromatic numbers of two well-known

classes of graph, namely complete multipartite graphs and cycles. We begin with

complete bipartite graphs. For a star K1,n−1 of order n > 2, we have seen that

χk
m(K1,n−1) = (k − 1)(n − 1) + 2 for 1 6 k 6 n − 1. Hence, we consider complete

bipartite graphs that are not stars here. Hamiltonian labeling numbers and Hamil-

tonian chromatic numbers of complete bipartite graphs in general were determined

in [7], [29].

Theorem 3.1 [7], [29]. For integers r and s with 2 6 r 6 s,

χr+s−1
m (Kr,s) =

{

2r if r = s,

(s − r)(r + s − 1) + 2r − 1 if r < s

and

χr+s−2
m (Kr,s) =

{

r if r = s,

(s − r − 1)(r + s − 1) + 2r − 1 if r < s.

We now consider the k-metric chromatic number of Kr,s (2 6 r 6 s) for all k

with 1 6 k 6 r + s − 1. Let V1 and V2 be the partite sets of Kr,s. Observe that if

u, v ∈ V (Kr,s), then

(9) D(u, v) =











2r − 2 if u, v ∈ Vi and |Vi| = r,

2r − 1 if uv ∈ E(Kr,s),

2r if u, v ∈ Vi and |Vi| = s > r.

Thus adiam(Kr,s) = 2r − 2. This gives us the following result for regular complete

bipartite graphs.

Corollary 3.2. For integers k and r > 2 with 1 6 k 6 2r − 1,

χk
m(Kr,r) =











2r if k = 2r − 1,

r if k = 2r − 2,

1 otherwise.

It remains to consider the case with 2 6 r < s.
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Theorem 3.3. For integers r, s and k with 2 6 r < s and 1 6 k 6 r + s − 1

χk
m(Kr,s) =











(k − 2r + 1)(r + s − 1) + 2r − 1 if 2r − 1 6 k 6 r + s − 1,

r if k = 2r − 2,

1 otherwise.

P r o o f. By Observation 1.2 and Theorem 3.1 together with (9) we may assume

that 2r−2 6 k 6 r+s−3. By Corollary 2.5, we have χ2r−2
m (Kr,s) = χ(Kr∪Ks) = r.

For k = 2r−1, let V1 = {u1, u2, . . . , ur} and V2 = V (Kr,s)−V1 be the partite sets

of Kr,s and consider the coloring c of Kr,s defined by c(ui) = 2i−1 for 1 6 i 6 r and

c(v) = 2 for every v ∈ V2. Then c is a (2r − 1)-metric coloring of Kr,s whose value

is 2r − 1 and so χ2r−1
m (Kr,s) 6 2r − 1. On the other hand, by Theorems 2.1 and 3.1

χ2r−1
m (Kr,s) > χr+s−1

m (Kr,s) − (s − r)(r + s − 1) = 2r − 1.

Hence, χ2r−1
m (Kr,s) = 2r − 1. Furthermore,

χk
m(Kr,s) = (k − 2r + 1)(r + s − 1) + 2r − 1

for every k with 2r 6 k 6 r + s − 3 again by Theorems 2.1 and 3.1. �

With the aid of Corollary 3.2 and Theorem 3.3 we are able to determine the

k-metric chromatic numbers of complete l-partite graphs for each l > 2.

Theorem 3.4. Let G be a complete l-partite graph (l > 2) of order n such that

the maximum of the cardinalities of its partite sets equals n1.

(a) If n1 < n/2, then {χk
m(G)}n−1

k=1 : 1, 1, . . . , 1, n.

(b) If n1 = n/2, then {χk
m(G)}n−1

k=1 : 1, 1, . . . , 1, n/2, n.

(c) If n1 > n/2, then

χk
m(G) =











[k − 2(n − n1) + 1] (n − 1) + 2(n − n1) − 1 if k > 2(n − n1) − 1,

n − n1 if k = 2(n − n1) − 2,

1 otherwise.

P r o o f. If n1 < n/2, then l > 3 and for every pair u, v of nonadjacent vertices

deg u + deg v > 2(n − n1) > n. Then G is Hamiltonian-connected and the result is

immediate.

If n1 > n/2, then observe that G contains H = Kn1,n−n1
as a subgraph and

so χk
m(G) 6 χk

m(H). Furthermore, one can verify that DG(u, v) = DH(u, v) for

every two vertices u and v. Therefore, every k-metric coloring of G is a k-metric

coloring of H , that is, χk
m(G) > χk

m(H). The result now follows by Corollary 3.2

and Theorem 3.3. �
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We next consider the k-metric chromatic numbers of cycles.

Theorem 3.5. For positive integers k and n with 1 6 k 6 n − 1,

χk
m(Cn) =

{

2(k + 1) − n if ⌈n/2⌉ 6 k 6 n − 1,

1 otherwise.

P r o o f. Since adiam(Cn) = ⌈n/2⌉, it follows by Observation 1.2 that χk
m(Cn) =

1 if 1 6 k 6 ⌈n/2⌉ − 1. Thus we may assume that ⌈n/2⌉ 6 k 6 n − 1. Let

Cn = (v1, v2, . . . , vn, v1). We define a coloring c of Cn as follows.

(10) c(vi) =











1 if 1 6 i 6 n − k,

i − n + k + 1 if n − k + 1 6 i 6 ⌊n/2⌋,

c(vi−⌊n/2⌋) − ⌈n/2⌉ + k + 1 if ⌊n/2⌋ + 1 6 i 6 n.

Hence, 1 = c(v1) 6 c(v2) 6 . . . 6 c(vn) = 2(k + 1)− n. We show that c is a k-metric

coloring of Cn, that is,

(11) |c(u) − c(v)| + D(u, v) > k + 1

for every two distinct vertices u and v of Cn. Let u = vi and v = vj for some i, j

with 1 6 i < j 6 n. Observe that |c(u) − c(v)| 6 j − i. If u and v are antipodal

vertices of Cn, then j ∈ {i + ⌊n/2⌋, i + ⌈n/2⌉} and so

|c(u) − c(v)| + D(u, v) > c(vi+⌊n/2⌋) − c(vi) + ⌈n/2⌉ = k + 1.

Thus we may assume that u and v are not antipodal vertices of Cn. We consider

two cases, according to whether j 6 ⌊n/2⌋ or j > ⌊n/2⌋ + 1.

C a s e 1. j 6 ⌊n/2⌋. Then D(u, v) = n − (j − i). If j 6 n − k, then

|c(u) − c(v)| + D(u, v) = 0 + D(u, v) = n − j + i > k + i > k + 1.

If i > n − k + 1, then |c(u) − c(v)| = j − i and so

|c(u) − c(v)| + D(u, v) = n > k + 1.

Otherwise, c(u) = 1 and c(v) = j − n + k + 1 and so

|c(u) − c(v)| + D(u, v) = k + i > k + 1.
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C a s e 2. j > ⌊n/2⌋ + 1. Let S be the set of antipodal vertices of v such that

x ∈ S if and only if c(x) 6 c(v). Observe that S is nonempty. Let w ∈ S such that

c(w) = max{c(x) : x ∈ S}. Clearly D(u, v) > D(v, w) since u is not an antipodal

vertex of v. If c(u) 6 c(w), then

|c(u) − c(v)| + D(u, v) = [c(v) − c(u)] + D(u, v)

> [c(v) − c(w)] + [c(w) − c(u)] + D(v, w)

> |c(v) − c(w)| + D(v, w) > k + 1.

Finally, if c(u) > c(w), then observe that D(u, v) = d(u, w) + D(v, w) > [c(u) −

c(w)] + D(v, w). Hence,

|c(u) − c(v)| + D(u, v) = [c(v) − c(w)] + [c(w) + c(u)] + D(u, v)

> |c(v) − c(w)| + D(v, w) > k + 1.

In each case, (11) is satisfied. Therefore, χk
m(Cn) 6 c(vn) = 2(k + 1) − n.

It now only remains to be shown that χk
m(Cn) > 2(k+1)−n for ⌈n/2⌉ 6 k 6 n−1.

By Observation 1.2, χm
k (Cn) > 2. We consider two cases, according to whether n is

odd or n is even.

C a s e I. n is odd. We proceed by induction on k. For k = ⌈n/2⌉, observe by

Corollary 2.5 that

χ⌈n/2⌉
m (Cn) = χ(Cn) = 3 = 2 (⌈n/2⌉ + 1) − n.

Assume that χk−1
m (Cn) > 2k − n for some integer k with k − 1 > ⌈n/2⌉. It then

follows by Theorem 2.1 that χk
m(Cn) > χk−1

m (Cn) + 1 > 2k + 1 − n. Assume, to the

contrary, that χk
m(Cn) = 2k+1−n and let c′ be a minimum k-metric coloring of Cn

using the colors in N2k+1−n. Then there exist adjacent vertices u and v such that

c′(u) 6 k − ⌊n/2⌋ and c′(v) > k − ⌊n/2⌋ + 1. Let w be the antipodal vertex of both

u and v. If c′(w) 6 k − ⌊n/2⌋, then

|c′(u) − c′(w)| + D(u, w) 6 [(k − ⌊n/2⌋) − 1] + ⌈n/2⌉ = k,

while if c′(w) > k − ⌊n/2⌋ + 1, then

|c′(v) − c′(w)| + D(v, w) 6 [(2k + 1 − n) − (k − ⌊n/2⌋ + 1)] + ⌈n/2⌉ = k.

In each case, we obtain a contradiction. Therefore, χk
m(Cn) > 2(k + 1) − n.

C a s e II. n is even. Again, we proceed by induction on k. For k = n/2, we have

χn/2
m (Cn) = χ

(n

2
K2

)

= 2 = 2 (n/2 + 1) − n.
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Assume that χk−1
m (Cn) > 2k−n for some integer k with k−1 > n/2. Then χk

m(Cn) >

χk−1
m (Cn) + 1 > 2k + 1−n. Assume, to the contrary, that χk

m(Cn) = 2k + 1− n and

let c′ be a minimum k-metric coloring of Cn using the colors in N2k+1−n. Then there

exist adjacent vertices u and v such that c(u) 6 k − n/2 + 1 and c(v) > k − n/2 + 2.

Let wu be the antipodal vertex of u. If c(wu) 6 k − n/2 + 1, then

|c(u) − c(wu)| + D(u, wu) 6 [(k − n/2 + 1) − 1] + n/2 = k,

which is impossible and so c(wu) > k − n/2 + 2. However, this implies that

|c(v) − c(wu)| + D(v, wu) 6 [(2k + 1 − n) − (k − n/2 + 2)] + (n/2 + 1) = k,

which is another contradiction. Hence, χk
m(Cn) > 2(k + 1) − n. �

4. Realizable triples

Suppose that G is a nontrivial connected graph of order n. We have seen in

the sequence {χk
m(G)}n−1

k=1 that the first term greater than 1 appears when k =

adiam(G) and the sequence is strictly increasing thereafter by Theorem 2.1. For this

reason, it is important to study the adiam(G)-metric chromatic number of a graph

G. Furthermore, the adiam(G)-metric chromatic number is related to Hamiltonian

properties of a graph G. For example, we have seen that if G is a Hamiltonian-

connected graph of order n and adiam(G) = a, then χa
m(G) = n. In fact, more can

be said. For a nontrivial connected graph G of order n with a = adiam(G) and an

integer k with a 6 k 6 n − 1, recall that the graph Gk has V (Gk) = V (G) and

uv ∈ E(Gk) if and only if DG(u, v) 6 k. By Corollary 2.5,

χa
m(G) =

{

2 if and only if Ga is bipartite,

n if and only if Ga is complete.

In particular, observe that χa
m(G) = n if and only if D(u, v) = adiam(G) for every

two vertices u and v in G.

The circumference cir(G) of a graph G of order n containing a cycle is the length

of a longest cycle in G. Thus 3 6 cir(G) 6 n and cir(G) = n if and only if G is

Hamiltonian. Also, adiam(G) 6 cir(G) − 1.

57



Theorem 4.1. Let G be a connected graph of order n > 2, adiam(G) = a and

cir(G) = l.

(a) χa
m(G) = n if and only if G is Hamiltonian-connected.

(b) If G is Hamiltonian but is not Hamiltonian-connected, then

2 6 χa
m(G) 6 ⌈n/(n − a)⌉ 6 ⌈n/2⌉ 6 a 6 n − 2.

(c) If G is 2-edge-connected but is not Hamiltonian, then

χa
m(G) 6

{

n − l + ⌈l/(l − a)⌉ − 1 if a + 1 6 l 6 2a,

n − l + 1 if l > 2a + 1.

P r o o f. For (a), we have seen that χa
m(G) = n if G is Hamiltonian-connected.

For the converse, we verify that if χa
m(G) = n, then a = n − 1. Assume, to the

contrary, that χa
m(G) = n and a 6 n − 2. Since χa

m(G) = n, the detour distance

between every two vertices in G equals a. Suppose that uv ∈ E(G). Since D(u, v) =

a, the edge uv belongs to an (a + 1)-cycle C. Furthermore, since n > a + 2 and G

is connected, we may assume that there exists a vertex w ∈ V (G) − V (C) that is

adjacent to u. However then, D(v, w) > a + 1 and this is a contradiction.

For (b), observe that χa
m(G) > 2 and a 6 n − 2. Let C = (v1, v2, . . . , vn, v1)

be a Hamiltonian cycle in G. Therefore, a > adiam(C) = ⌈n/2⌉. To show that

χa
m(G) 6 ⌈n/2⌉, consider a coloring c : V (G) → N defined by c(vi) = ⌈i/(n − a)⌉ for

1 6 i 6 n. Suppose that 1 6 i < j 6 n and c(vi) = c(vj). Then 1 6 j − i 6 n− a− 1

and so DG(vi, vj) > n − (j − i) > a + 1, that is, c is an adiam(G)-metric coloring of

G. Therefore,

χa
m(G) 6 c(vn) = ⌈n/(n− a)⌉ 6 ⌈n/2⌉.

Finally, for (c), first observe that 3 6 l 6 n − 1. Let C = (v1,v2, . . . , vl,v1) be a

cycle of length l and V (G) − V (C) = {vl+1, vl+2, . . . , vn}. Since G is connected, we

assume that v1vl+1 ∈ E(G). If a + 1 6 l 6 2a, then one can verify that the coloring

c1 : V (G) → N given by

c(vi) =

{

⌈i/(l − a)⌉ if 1 6 i 6 l,

⌈l/(l − a)⌉ + i − l − 1 if l + 1 6 i 6 n

is an adiam(G)-coloring of G whose value is n − l + ⌈l/(l − a)⌉ − 1. Similarly, if

l > 2a + 1, then a coloring c2 : V (G) → N defined by c2(vi) = 1 for 1 6 i 6 l and

c2(vi) = i − l + 1 for l + 1 6 i 6 n has the desired property. �
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We have seen that if G is a connected graph of order n > 3 with adiam(G) = a

and χa
m(G) = χ, then 1 6 a 6 n − 1 and 2 6 χ 6 n. Define a triple (a, χ, n) of

integers with

(12) 1 6 a 6 n − 1, 2 6 χ 6 n and n > 3

to be a realizable triple if there exists a connected graph G of order n with

adiam(G) = a and χa
m(G) = χ. Next, we investigate the following question:

(13) Which triples (a, χ, n) of integers satisfying (12) are realizable?

For 3 6 n 6 5, all realizable triples are shown in Table 1, where “◦” indicates that

the corresponding triple is realizable and “×” indicates that the corresponding triple

is not realizable. In Table 1, the first table is for n = 3, the second table is for n = 4

and the third table is for n = 5. For example, the triple (1, 2, 3) is realizable, while

the triples (2, 3, 4) and (3, 4, 5) are not realizable.

a
χ 2 3

1 ◦ ×
2 × ◦

a
χ 2 3 4

1 ◦ × ×
2 ◦ × ×
3 × × ◦

a
χ
2 3 4 5

1 ◦ × × ×
2 ◦ ◦ × ×
3 ◦ ◦ × ×
4 × × × ◦

Table 1. Realizable triples (a, χ, n) where n ∈ {3, 4, 5}

In general, the following triples of integers satisfying (12) are realizable.

Theorem 4.2. Let a, χ and n > 3 be integers with 1 6 a 6 n−1 and 2 6 χ 6 n.

Then

(a) (1, χ, n) is realizable if and only if χ = 2,

(b) (a, n, n) is realizable if and only if a = n − 1,

(c) (n − 1, χ, n) is realizable if and only if χ = n,

(d) (a, n − 1, n) is realizable if and only if a = 1 and n = 3,

(e) (a, 2, n) is realizable if and only if 1 6 a 6 n − 2,

(f) (a, a + 1, n) is realizable for all a with 1 6 a 6 ⌈n/2⌉ − 1.

P r o o f. Observe that (a) is a consequence of (4) and the fact that a connected

graph G has adiam(G) = 1 if and only if G contains a bridge; while (b) and (c)

follow Theorem 4.1(a) and the fact that a nontrivial connected graph G of order n

has adiam(G) = n − 1 if and only if G is Hamiltonian-connected. Thus, it remains

to verify (d)–(f).
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For (d), we may assume that 2 6 a 6 n − 2 by (a)–(c). Assume, to the contrary,

that there exists a connected graph G of order n > 4 with adiam(G) = a and

χa
m(G) = n − 1. Then G is 2-edge-connected and χ(Ga) = n − 1. Hence, ω(Ga) =

n − 1, that is, there exists a vertex v0 ∈ V (G) such that DG(u, v) = a whenever

v0 /∈ {u, v}. Since G is not a star, E(G − v) 6= ∅ for every v ∈ V (G). We may

therefore assume that v1v2 ∈ E(G − v0) ⊆ E(G) and so DG(v1, v2) = a. Then G

contains an (a + 1)-cycle C = (v1, v2, . . . , va+1, v1). Since a + 1 6 n− 1, there exists

a vertex x ∈ V (G) − V (C) and we may further assume that v1x ∈ E(G). Then

DG(vi, x) > a + 1 for i ∈ {2, a + 1}, which implies that x = v0. Now since G is

2-edge-connected, deg x > 2. If x is adjacent to another vertex belonging to C, say

vlx ∈ E(G) for some l with 2 6 l 6 ⌈a/2⌉ + 1, then DG(v2, vl+1) > a + 1, which is

impossible. Therefore, a 6 n−3 and x is adjacent a vertex y ∈ V (G)− [V (C)∪{x}].

However then, DG(v2, y) > a + 2, which is also impossible. Thus (d) holds.

For (e), we may again assume that 2 6 a 6 n−2. Let G = K2+
(

Ka−1 ∪ Kn−a−1

)

.

Then it can be verified that adiam(G) = a and D(u, v) = a if and only if deg u =

deg v = n − 1. Therefore, Ga = K2 ∪ Kn−2 and so χa
m(G) = χ(Ga) = 2 by

Corollary 2.5.

Finally for (f), consider the graph G = K1 + (Ka ∪ Kn−a−1). Observe that

adiam(G) = a and Ga = G if n = 2a + 1 while Ga = Ka+1 ∪ Kn−a−1 otherwise.

Thus, χa
m(G) = χ(Ga) = a + 1 by Corollary 2.5. �

With the aid of Theorems 4.1 and 4.2, we are able to determine all realizable

triples (a, χ, n) for n ∈ {6, 7}. These realizable triples are shown in Table 2, where

the first table is for n = 6 and the second table is for n = 7 and where “◦” indicates

that the corresponding triple is realizable while “×” indicates that the corresponding

triple is not realizable.

a
χ
2 3 4 5 6

1 ◦ × × × ×
2 ◦ ◦ × × ×
3 ◦ × × × ×
4 ◦ ◦ × × ×
5 × × × × ◦

a
χ 2 3 4 5 6 7

1 ◦ × × × × ×
2 ◦ ◦ × × × ×
3 ◦ × ◦ × × ×
4 ◦ ◦ × × × ×
5 ◦ ◦ × × × ×
6 × × × × × ◦

Table 2. Realizable triples (a,χ, n) for n = 6, 7

As an illustration, we show that all realizable triples (a, χ, 6) are exactly those

given in the first table in Table 2. Recall that if H is a connected spanning subgraph

of a graph G of order n, then adiam(H) 6 adiam(G) and χk
m(G) 6 χk

m(H) for

1 6 k 6 n − 1 by Observation 1.1.
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Theorem 4.3. A triple (a, χ, 6) of integers satisfying (12) is realizable if and only

if it is one of the realizable triples shown in the first table of Table 2, that is,

(a, χ, 6) ∈ {(a, 2, 6): 1 6 a 6 4} ∪ {(2, 3, 6), (4, 3, 6), (5, 6, 6)}.

P r o o f. By Theorems 4.1 and 4.2, we only need to consider those triples (a, χ, 6)

with 2 6 a 6 4 and χ = 3, 4. The triple (4, 3, 6) is realizable sinceK3,3 has the desired

property and so is (2, 3, 6) with the graph K1 +(P2 ∪P3). Thus, it remains to verify

that none of the four triples (3, 3, 6), (2, 4, 6), (3, 4, 6) and (4, 4, 6) is realizable. Let G

be an arbitrary connected graph of order 6. By Theorem 4.2(a)(c), we may assume

that 2 6 adiam(G) 6 4 and so every edge belongs to a cycle. Hence 3 6 cir(G) 6 6.

Note that if cir(G) = 3, then G must be disconnected or contain a bridge, so this is

impossible. On the other hand, if cir(G) = 6, then χa
m(G) ∈ {2, 3} if adiam(G) = 4

while χa
m(G) = 2 if adiam(G) = 3 by Theorem 4.1(b).

If cir(G) = 5, then Gmust contain the graph F in Figure 1 as a spanning subgraph

since G is 2-edge-connected. Observe also that adiam(G) > adiam(F ) = 3 and

χ3
m(G) 6 χ3

m(F ) = χ(P4 ∪ K2) = 2 (by Corollary 2.5). Furthermore, degG v1 =

degG v2 = 2 since otherwise cir(G) = 6. Therefore, adiam(G) 6 DG(v3, v4) = 3.

That is, adiam(G) = 3 and χa
m(G) = 2.

v2

v1

v3 v4

Figure 1. The graph F

Finally, suppose that cir(G) = 4. Then either (i) G ∈ {K2,4, K1,1,4} or (ii) G ∈

{K1 +(K2∪P3), K1 +(K2 ∪K3)}. If (i) occurs, then adiam(G) = 2 and χ2
m(G) = 2;

while if (ii) occurs, then adiam(G) = 2 and χ2
m(G) = 3. Hence, adiam(G) = 2 and

χa
m(G) ∈ {2, 3} if cir(G) = 4. �

Based on the information obtained from the adiam(G)-metric chromatic numbers

of connected graphs G of order n with 3 6 n 6 7 and Theorems 4.1 and 4.2, we

conclude with the following questions.

P r o b l e m 4.4. Let (a, χ, n) be a triple of integers satisfying (12) and n > 8.

(a) Is it true that no triple (a, a + 1, n) with ⌈n/2⌉ 6 a 6 n − 2 is realizable?

(b) Is it true that no triple (a, χ, n) with 3 6 a + 2 6 χ 6 n is realizable?

(c) Is it true that a triple (a, χ, n) with ⌈n/2⌉ + 1 6 χ 6 n is realizable if and only

if (a, χ, n) = (n − 1, n, n)?
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