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Abstract. This paper gives the local existence of mild solutions to the Cauchy problem
for the complex Ginzburg-Landau type equation

∂u

∂t
− (λ+ iα)∆u+ (κ+ iβ)|u|q−1u− γu = 0

in R
N × (0,∞) with Lp-initial data u0 in the subcritical case (1 6 q < 1 + 2p/N), where u

is a complex-valued unknown function, α, β, γ, κ ∈ R, λ > 0, p > 1, i =
√
−1 and N ∈ N.

The proof is based on the Lp-Lq estimates of the linear semigroup {exp(t(λ+ iα)∆)} and
usual fixed-point argument.
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1. Introduction and main result

We consider the Cauchy problem for the complex Ginzburg-Landau type equation,

(CGL)







∂u

∂t
− (λ + iα)∆u+ (κ+ iβ)|u|q−1u− γu = 0 in R

N × (0,∞),

u(·, 0) = u0 on R
N ,

where u is a complex-valued unknown function, α, β, γ, κ ∈ R, λ > 0, q > 1, i =√
−1 and N ∈ N. Our concern is the local existence of mild solutions to (CGL)

with κ ∈ R. We call it the complex Ginzburg-Landau “type” equation because it

is usually assumed in (CGL) that κ > 0. There are many studies on the global
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existence and uniqueness of solutions to (CGL) in various cases, see, e.g., Yang [14],

Levermore-Oliver [6], Ginibre-Velo [3], [4], Okazawa-Yokota [10]–[13], Okazawa [9],

Yokota-Okazawa [15], Kobayashi-Matsumoto-Tanaka [5], Matsumoto-Tanaka [7], [8],

Clément-Okazawa-Sobajima-Yokota [1].

The following table shows more general results for the solvability of (CGL) on

Lp(Ω) with Lp(Ω)-initial data, where Ω ⊂ R
N :

Ref. (p, q)-condition Ω solution other condition

[9] 1 6 p, 1 6 q 6 1 +
2p

N
bounded C1-in-time, local λ > 0

[8] 1 < p, 1 6 q 6 1 +
2p

N
general, smooth C1-in-time, global

|α|
λ

<
2
√
p− 1

|p− 2|

The purpose of this paper is to establish the local existence of solutions to (CGL)

in the case Ω = R
N under almost the same conditions as in [9, Proposition 1.1].

Before stating our results, we introduce an operator Ap.

Definition 1.1 (CGL-operator). Let λ > 0, α ∈ R and assume that an operator

Ap : D(Ap) (⊂ Lp(RN )) → Lp(RN ) (1 < p < ∞) satisfies

D(Ap) := W 2,p(RN ) ∩W 1,p
0 (RN ), Apu := −(λ+ iα)∆u (u ∈ D(Ap)).

Then we say that Ap is a CGL-operator.

Using the operator Ap, we can regard (CGL) as an abstract Cauchy problem on

Lp(RN ):

(CGL)Lp







du

dt
+Apu+ (κ+ iβ)|u|q−1u− γu = 0 in (0,∞),

u(0) = u0.

Strictly speaking, (CGL)Lp might not be called the abstract Cauchy problem, be-

cause it still has a concretely nonlinear term |u|q−1u.

We will show that there exists a semigroup {e−tAp}t>0 which is generated by Ap

(see Section 2). This semigroup will be called a CGL-semigroup. Then we can define

a mild solution to (CGL)Lp .

Definition 1.2 (mild solution). Let u0 ∈ Lp(RN ) and T > 0. Then u : [0, T ) →
Lp(RN ) is called a mild solution to (CGL)Lp on [0, T ) if u ∈ C([0, T );Lp(RN )) and

(IE) u(t) = e−tApu0 +

∫ t

0

e−(t−s)Ap [γu(s)− (κ+ iβ)|u(s)|q−1u(s)] ds, t ∈ [0, T ).

We now state our main result in this paper.
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Theorem 1.1. Let u0 ∈ Lp(RN ) (1 < p < ∞) and assume that

1 6 q < 1 +
2p

N
.

Then there exist T0 > 0 and a mild solution to (CGL)Lp on [0, T0).

R em a r k 1.1. We can show the uniqueness of mild solutions belonging to YT

which is defined in Section 3. It seems that the global existence can be proved under

some conditions for initial data and coefficients. We will discuss these and the critical

case q = 1 + 2p/N in our future work.

In Section 2, we give some lemmas and study the CGL-semigroup {e−tAp}, in
particular, we derive the Lp-Lq estimates of {e−tAp}. In Section 3, we prove Theo-

rem 1.1.

2. Construction of CGL-semigroup

First we prepare some lemmas to prove the existence of the CGL-semigroup and

to obtain its properties.

The following lemma gives a simple equality, which is proved by the methods of

complex analysis.

Lemma 2.1. Let z ∈ C \ {0} with Re z > 0. Then

∫

RN

e−z|x|2 dx =
(

π

z

)N/2

.

P r o o f. It suffices to show that

(2.1) I :=

∫ ∞

0

e−zx2

dx =
1

2

(

π

z

)1/2

.

We show only the case Im z > 0. Set f : C → C satisfying f(ω) := e−ω2

and

let R > 0 and θ := 1
2 arg z. Then it follows from the Cauchy integral theorem

that
∫

C f(ω) dω = 0, where C is the curve in the complex plane formed by C =

C1 + CR − C2. Here C1 and C2 are the directed line segments from the origin 0 to

R and Reiθ, respectively. CR is the counterclockwise arc of the circle centered at the

origin with radius R and sector 0 6 argω 6 θ. Noting θ 6 π/4, we see from the

Cauchy integral theorem that

0 =

∫ R

0

e−x2

dx+ iR

∫ θ

0

e−(Reis)2eis ds−
√
z

∫ R/
√

|z|

0

e−zx2

dx →
√

π

2
+ 0−

√
zI

as R → ∞. So we obtain (2.1). The case Im z 6 0 is shown analogously. �
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The next lemma constitutes the CGL-semigroup e−tAp and its kernel.

Lemma 2.2. Let t > 0, λ > 0, α ∈ R and set

Gt(x) := [4πt(λ+ iα)]−N/2e−|x|2/(4t(λ+iα)), x ∈ R
N .

Then a one-parameter family {T (t)}t>0 of operators on Lp(RN ) defined as

(2.2) T (t)f :=

{

Gt ∗ f = [4πt(λ+ iα)]−N/2

∫

RN

e−|·−y|2/(4t(λ+iα))f(y) dy, t > 0,

f, t = 0,

where f ∈ Lp(RN ), is a semigroup which is generated by Ap.

We will see from Lemma 2.2 that T (t) can be represented as e−tAp .

P r o o f. We consider the linear Cauchy problem

(2.3)
∂u

∂t
(x, t) = (λ+ iα)∆u(x, t); u(·, 0) := u0 ∈ Lp(RN ).

Using the Fourier transformation in x, we obtain the solution to (2.3) by

u(·, t) = F−1[e−(λ+iα)|ξ|2t(Fu0)] = F−1[e−(λ+iα)|ξ|2t] ∗ u0.

We see from Lemma 2.1 that

F−1[e−(λ+iα)|ξ|2t] =
1

(2π)N

∫

RN

exp[ix · ξ − (λ+ iα)|ξ|2t] dξ

=
1

(2π)N
e−|x|2/(4(λ+iα)t)

∫

RN

exp
[

− (λ+ iα)t
∣

∣

∣
ξ − ix

2(λ+ iα)t

∣

∣

∣

2]

dξ

= Gt(x).

Since we can verify that T (t)u0 is a solution to (2.3), the assertion follows. �

The following lemma can be proved in a similar way as in the proof for the heat

semigroup (see also Giga-Giga-Saal [2, Section 1.1.2]).
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Lemma 2.3 (Lp-Lq estimates). Let 1 < p < ∞, p 6 q 6 ∞ and t > 0. Then the

following Lp-Lq estimate of the CGL-semigroup {e−tAp} holds:

‖e−tApf‖Lq 6 Mp,qt
−(N/2)·(1/p−1/q)‖f‖Lp, f ∈ Lp(RN ),

where

Mp,q :=
( 1

4π

√
λ2 + α2

)(N/2)·(1/p−1/q)
(

√
λ2 + α2

λ

)(N/2)·(1−1/p+1/q)

.

P r o o f. Let 1 6 r < ∞. Then using Lemma 2.1, we have

‖Gt‖Lr =
( 1

4πt
√
λ2 + α2

)(N/2)·(1−1/r)
(
√
λ2 + α2

λr

)N/(2r)

.

Noting r−1/r 6 1 and applying the Hausdorff-Young inequality to (2.2), we can

obtain the assertion. �

3. Local solvability of (CGL)

In this section, we prove Theorem 1.1. The proof is based on the fixed-point

theorem.

P r o o f of Theorem 1.1. Let R > 0 with R > (Mp,p +Mp,pq)‖u0‖Lp . Set

YT := {u ∈ L∞
loc(0, T ;L

pq(RN )) ∩ L∞(0, T ;Lp(RN )); ‖u‖YT
< ∞},

‖u‖YT
:= sup

t∈(0,T )

tθ‖u(t)‖Lpq + sup
t∈(0,T )

‖u(t)‖Lp,

θ :=
N

2

(1

p
− 1

pq

)

(0 6 θ < 1/q 6 1),

where T ∈ (0, 1). Then YT is a complex Banach space. Moreover, set the ball in YT ;

BT,R := {u ∈ YT ; ‖u‖YT
< R}

and the operator Φu0
on BT,R

YT

(3.1) Φu0
(u)(t) := e−tApu0 +

∫ t

0

e−(t−s)Ap [γu(s)− (κ+ iβ)|u(s)|q−1u(s)] ds.

Then we show that Φu0
has a fixed-point u (Step 1, Step 2). After that we confirm

that u(·) is a unique solution to (CGL)Lp (Step 3).
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Step 1 (u ∈ BT,R
YT ⇒ Φu0

(u) ∈ BT,R
YT

). Let u ∈ BT,R
YT
. Then we have

‖Φu0
(u)(t)‖Lpq 6 ‖e−tApu0‖Lpq + |γ|

∫ t

0

‖e−(t−s)Apu(s)‖Lpq ds(3.2)

+
√

κ2 + β2

∫ t

0

‖e−(t−s)Ap |u(s)|q−1u(s)‖Lpq ds

=: I1,pq + |γ|I2,pq +
√

κ2 + β2I3,pq.

Since 0 6 θ 6 qθ < 1, it follows from Lemma 2.3 that

I1,pq 6 t−θMp,pq‖u0‖Lp ,(3.3)

I2,pq 6 Mp,pq

∫ t

0

(t− s)−θ‖u(s)‖Lp ds(3.4)

6 t1−θMp,pqR

1− θ
,

I3,pq 6 Mp,pq

∫ t

0

(t− s)−θ‖u(s)‖qLpq ds(3.5)

6 Mp,pqR
q

∫ t

0

(t− s)−θs−qθ ds

= t1−(q+1)θMp,pqR
qB(1− qθ, 1− θ),

where B is the Beta function. Since t ∈ (0, 1), we have t < t1−qθ. Combining

(3.3)–(3.5) with (3.2), we see that

(3.6) tθ‖Φu0
(u)(t)‖Lpq 6 Mp,pq‖u0‖Lp + T 1−qθRC1,

where

C1 := Mp,pq

( |γ|
1− θ

+Rq−1B(1 − qθ, 1− θ)
√

κ2 + β2
)

.

Next we estimate the Lp-norm of (3.1). Similarly as in (3.3)–(3.5), we see

‖Φu0
(u)(t)‖Lp 6 ‖e−tApu0‖Lp + |γ|

∫ t

0

‖e−(t−s)Apu(s)‖Lp ds

+
√

κ2 + β2

∫ t

0

‖e(t−s)A|u(s)|q−1u(s)‖Lp ds

6 Mp,p‖u0‖Lp + |γ|tMp,pR+
√

κ2 + β2t1−qθMp,pR
q

1− qθ
.

Thus we have

(3.7) ‖Φu0
(u)(t)‖Lp 6 Mp,p‖u0‖Lp + T 1−qθRC2,
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where

C2 := Mp,p

(

|γ|+ Rq−1
√

κ2 + β2

1− qθ

)

.

It follows from (3.6) and (3.7) that

‖Φu0
(u)‖YT

6 (Mp,p +Mp,pq)‖u0‖Lp + T 1−qθR(C1 + C2).

Therefore we obtain

‖Φu0
(u)‖YT

6 R (T 6 T1),

where

T1 :=
[R − (Mp,p +Mp,pq)‖u0‖Lp

R(C1 + C2)

]1/(1−qθ)

.

Step 2 (Φu0
: contraction in BT,R

YT
). Let u, v ∈ BT,R

YT
. Then we have

‖Φu0
(u)(t)− Φu0

(v)(t)‖Lpq 6 |γ|J1,pq +
√

κ2 + β2J2,pq,

where

J1,pq :=

∫ t

0

‖e−(t−s)Ap [u(s)− v(s)]‖Lpq ds,

J2,pq :=

∫ t

0

‖e−(t−s)Ap [|u(s)|q−1u(s)− |v(s)|q−1v(s)]‖Lpq ds.

Similarly as in (3.4) and (3.5), it follows from Lemma 2.3 that

J1,pq 6 t1−θMp,pq

1− θ
‖u− v‖YT

,

J2,pq 6 Mp,pqq

∫ t

0

(t− s)−θ(‖u(s)‖q−1
Lpq + ‖v(s)‖q−1

Lpq )‖u(s)− v(s)‖Lpq ds

6 t1−(q+1)θ2qMp,pqR
q−1B(1− qθ, 1− θ)‖u− v‖YT

.

Therefore we have for t ∈ (0, T )

(3.8) tθ‖Φu0
(u)(t)− Φu0

(v)(t)‖Lpq 6 T 1−qθC′
1‖u− v‖YT

,

where

C′
1 := Mp,pq

( |γ|
1− θ

+ 2qRq−1B(1− qθ, 1 − θ)
√

κ2 + β2
)

.

As in the proof of (3.7) we see from Lemma 2.3 that

(3.9) ‖Φu0
(u)(t)− Φu0

(v)(t)‖Lp 6 T 1−qθC′
2‖u− v‖YT

t ∈ (0, T ),
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where

C′
2 := Mp,p

(

|γ|+ 2q
Rq−1

√

κ2 + β2

1− qθ

)

.

Combining (3.8) and (3.9), we have

‖Φu0
(u)− Φu0

(v)‖YT
6

1

2
‖u− v‖YT

(T 6 T2),

where T2 := (2C′
1 + 2C′

2)
−1/(1−qθ).

Hence it follows from the fixed-point theorem that Φu0
has a unique fixed-point

u ∈ BT0,R
YT0 , where T0 := min{T1, T2}. Moreover, u ∈ BT0,R

YT0 satisfies (IE).

Step 3 (u ∈ C([0, T0);L
p(RN ))). Finally we prove that u ∈ BT0,R

YT0 given by

Step 2 is a mild solution to (CGL)Lp . Set

f(s) := γu(s)− (κ+ iβ)|u(s)|q−1u(s).

Then it suffices to show that

(3.10) f ∈ L1(0, T0;L
p(RN )).

Since ‖u(s)‖Lp 6 R and ‖u(s)‖Lpq 6 Rs−θ for s ∈ (0, T0), we have

∫ T0

0

‖u(s)‖Lp ds 6 RT0,

∫ T0

0

‖|u(s)|q‖Lp ds 6 Rq

∫ T0

0

s−qθ ds =
RqT 1−qθ

0

1− qθ
.

Therefore (3.10) follows. �

A c k n ow l e d gm e n t. The authors would like to thank the referee for sugges-

tions.
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