April 23, 2019 |
Prof. Petr KLÁN
Department of Chemistry and RECETOX, Faculty of Science, Masaryk University, Brno
Transition-metal-free releasing compounds activatable by visible to NIR light
Abstract: Photoactivatable compounds, also called caged compounds, are those which, upon photoactivation, irreversibly release a species possessing
desirable physical, chemical, or biological qualities. Short-wavelength UV radiation is not compatible with many biological and medical applications
because it can induce adverse side-reactions. Photorelease induced by red or NIR light is most desired, as the tissue absorption is limited by the
absorption of hemoglobin below 600 nm and absorption of water over 900 nm.
Only a few known photoactivatable (caged) molecules can be activated directly by visible/NIR light because the delivered excitation energy is in
principle too low for a covalent bond cleavage. In the past 5 years, we have introduced several new chromophores absorbing in the region of 600-1100
nm that can release biologically relevant species,1-3 for example, H2S or CO as gaseous signaling molecules. The design,
photoreaction mechanisms, spectroscopy and biological applications of these systems will be presented.
References:
[1] Palao E., Slanina T., Muchová L., Šolomek T., Vítek L., Klán P.: J. Am. Chem. Soc. 2016, 138, 126-133.
[2] Slanina T., Shrestha P., Palao E., Kand D., Peterson J., Dutton A., Rubinstein N., Weinstain R., Winter A., Klán P.: J. Am. Chem. Soc. 2017, 139, 15168-15175.
[3] Šolomek T., Wirz J., Klán P.: Acc. Chem. Res. 2015, 48, 3064-3072.
|
September 10, 2019 |
Dr. Ilia V. YAMPOLSKY
Department of Biomolecular Chemistry, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, RAS, Moscow, RF
New bioluminescence systems: luciferins, luciferases and luciferin biosynthesis pathways
Abstract: Many living organisms emit light, a phenomenon known as bioluminescence. The energy required for light production is generated by the oxidation of a small organic molecule, luciferin, catalyzed by a specific enzyme, luciferase.
Luminous taxa have currently been reported from about 800 genera. The chemical nature and mechanisms of action of the few known types of bioluminescence substrates (luciferins) are as diverse as their phylogenetic distribution.
Despite being widely used in reporter technologies, bioluminescent systems are largely understudied. Of at least forty different bioluminescent systems thought to exist in nature, molecular components of only ten light-emitting reactions are known, and the full biochemical pathway leading to light emission is only understood for two of them.
In this talk, the current status and perspectives, in the context of postgenomic era, of novel bioluminescence systems including fungi, earthworms and marine polychaetes will be reviewed.
References:
[1] Z. M. Kaskova, F. A. Dörr, V. N. Petushkov, K. V. Purtov, A. S. Tsarkova, N. S. Rodionova, K. S. Mineev, E. B. Guglya, A. Kotlobay, N. S. Baleeva, M. S. Baranov, A. S. Arseniev, J. I. Gitelson, S. Lukyanov, Y. Suzuki, S. Kanie, E. Pinto, P. Di Mascio, H. E. Waldenmaier, T. A. Pereira, R. P. Carvalho, A. G. Oliveira, Y. Oba, E. L. Bastos, C. V. Stevani, I. V. Yampolsky. Sci. Adv. 3, e1602847 (2017)
[2] A. S. Tsarkova, Z. M. Kaskova, I. V. Yampolsky. Acc. Chem. Res. 2016, 49 (11), 2372.
[3] Z. M. Kaskova, A. S. Tsarkova, I. V. Yampolsky. Chem. Soc. Rev., 2016, 45, 6048.
[4] Purtov KV, Petushkov VN, Baranov MS, Mineev KS, Rodionova NS, Kaskova ZM, Tsarkova AS, Petunin AI, Bondar VS, Rodicheva EK, Medvedeva SE, Oba Yuichi, Oba Yomiko, Arseniev AS, Lukyanov S, Gitelson JI, Yampolsky IV. Angewandte Chemie International Edition. 2015, 54, 8124.
[5] MA Dubinnyi, ZM Kaskova, NS Rodionova, MS Baranov, AY Gorokhovatsky, A Kotlobay, KM Solntsev, AS Tsarkova, VN Petushkov, IV Yampolsky, Angew. Chem. Int. Ed. 2015, 54, 7065.
[6] A.A. Kotlobay, K.S. Sarkisyan, Y.A. Mokrushina, M. Marcet-Houben, E.O. Serebrovskaya, N.M. Markina, L.G. Somermeyer, A.Y. Gorokhovatsky, A. Vvedensky, K.V. Purtov, V.N. Petushkov, N.S. Rodionova, T.V. Chepurnyh, L.I. Fakhranurova, E.B. Guglya, R. Ziganshin, A.S. Tsarkova, Z.M. Kaskova, V. Shender, M. Abakumov, T.O. Abakumova, I.S. Povolotskaya, F.M. Eroshkin, A.G. Zaraisky, A.S. Mishin, S. V. Dolgov, T.Y. Mitiouchkina, E.P. Kopantzev, H.E. Waldenmaier, A.G. Oliveira, Y. Oba, E. Barsova, E.A. Bogdanova, T. Gabaldón, C.V. Stevani, S. Lukyanov, I.V. Smirnov, J.I. Gitelson, F.A. Kondrashov, I.V. Yampolsky. PNAS 2018, 115, 12728
|