Biologia plantarum 62:166-172, 2018 | DOI: 10.1007/s10535-017-0751-6

The effects of silver ions and silver nanoparticles on cell division and expression of cdc2 gene in Allium cepa root tips

A. S. Fouad1,*, R. M. Hafez1
1 Botany and Microbiology Department, Faculty of Science, Cairo University, Cairo, Egypt

The effects of silver nanoparticles (AgNPs), silver ions (Ag+), and polyvinylpyrrolidone (PVP) on mitosis and expression of a gene encoding cyclin-dependent kinase 2 (cdc2) in onion roots were compared. Three concentrations (5, 10, and 15 mg dm-3) were employed in combination with three incubation times (3, 6, and 9 h). PVP enhanced mitotic index and cdc2 expression. Both silver forms decreased mitotic index and cdc2 expression. Genotoxicity of both silver forms were indicated by three major distinguishable classes of chromosome aberrations: spindle disturbances, clastogenic aberrations, and chromosome stickiness. Concerning Ag+ treatments, significant enhancements in occurrence of any chromosome aberration type was associated with significant decrease in mitotic index. On the other hand, disturbed spindle in AgNPs treatments was observed even in absence of significant reduction in mitotic index suggesting that AgNPs inhibit cellular events occurring during mitosis to proceed normally rather than starting of cell division.

Keywords: chromosome aberrations; mitotic index; mitotic abnormalities; phase index; real-time PCR
Subjects: silver ions; silver nanoparticles; cell division; mitotic index; chromosome abnormalities
Species: Allium cepa

Received: December 28, 2016; Revised: April 9, 2017; Accepted: May 19, 2017; Published: January 1, 2018Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Fouad, A.S., & Hafez, R.M. (2018). The effects of silver ions and silver nanoparticles on cell division and expression of cdc2 gene in Allium cepa root tips. Biologia plantarum62(1), 166-172. doi: 10.1007/s10535-017-0751-6.
Download citation

Supplementary files

Download filebpl-201801-0017_S1.pdf

File size: 488.4 kB

References

  1. Babaei, N., Abdullah, N.A.P., Saleh, G., Abdullah, T.L.: Control of contamination and explant browning in Curculigo latifolia in vitro cultures. - J. med. Plants Res. 7: 448-454, 2013.
  2. Bhushan, B. (ed.): Springer Handbook of Nanotechnology. 3rd Edition. - Springer-Verlag, Berlin - Heidelberg 2010. Go to original source...
  3. Blaser, S.A., Scheringer, M., MacLeod, M., Hungerbuhler, K.: Estimation of cumulative aquatic exposure and risk due to silver: contribution of nanofunctionalized plastics and textiles. - Sci. Total Environ. 390: 396-409, 2008. Go to original source...
  4. Boruc, J., Mylle, E., Duda, M., De Clercq, R., Rombauts, S., Geelen, D., Hilson, P., Inze, D., Van Damme, D., Russinova, E.: Systematic localization of the Arabidopsis core cell cycle proteins reveals novel cell division complexes. - Plant Physiol. 152: 553-565, 2010. Go to original source...
  5. De Veylder, L., Beeckman, T., Inze, D.: The ins and outs of the plant cell cycle. - Nat. Rev. mol. cell. Biol. 8: 655-665, 2007. Go to original source...
  6. Francis, D.: What's new in the plant cell cycle? - In: Lüttge, U., Beyschlag, W., Büdel, B., Francis, D. (ed): Progress in Botany. Vol. 70. Pp. 33-49. Springer-Verlag, Berlin - Heidelberg 2009. Go to original source...
  7. Hemerly, A., De Almeida Engler, J., Bergounioux, C., Van Montagu, M., Engler, G., Inzé, D., Ferreira, P.: Dominant negative mutants of the CDC2 kinase uncouple cell division from iterative plant development. - EMBO J. 14: 3925-3936, 1995. Go to original source...
  8. Hemerly, A.S., Ferreira, P., Engler, J., Van Montagu, M., Engler, G., Lnze, D.: cdc2a expression in Arabidopsis is linked with competence for cell division. - - Plant Cell 5: 1711-1723, 1993. Go to original source...
  9. Hirayama, T., Imajuku, Y., Anai, T., Matsui, M., Oka, A.: Identification of two cell-cycle controlling cdc2 gene homologs in Arabidopsis thaliana. - Gene 105: 159-165, 1991.
  10. Jo, Y.K., Kim, B.H., Jung, G.: Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. - Plant Dis. 93: 1037-1043, 2009. Go to original source...
  11. John, P.C., Mews, M., Moore, R.: Cyclin/Cdk complexes: their involvement in cell cycle progression and mitotic division. - Protoplasma 216: 119-42, 2001. Go to original source...
  12. Kaveh, R., Li, Y-S., Ranjbar, S., Tehrani, R., Brueck, C.L., Van Aken, B.: Changes in Arabidopsis thaliana gene expression in response to silver nanoparticles and silver ions. - Environ. Sci. Technol. 47: 10637-10644, 2013. Go to original source...
  13. Kim, J.S., Kuk, E., Yu, K.N., Kim, J.-H., Park, S.J., Lee, H.J., Kim, S.H., Park, Y.K., Park, Y.H., Hwang, C.-Y.: Antimicrobial effects of silver nanoparticles. - Nanomed. Nanotechnol. Biol. Med. 3: 95-101, 2007. Go to original source...
  14. Kitsios, G., Doonan, J.H.: Cyclin dependent protein kinases and stress responses in plants. - Plant Signal. Behav. 6: 204-209, 2011. Go to original source...
  15. Kittler, S., Greulich, C., Köller, M., Epple, M.: Synthesis of PVP-coated silver nanoparticles and their biological activity towards human mesenchymal stem cells. - Mater. Sci. Eng. Technol. 40: 258-264, 2009.
  16. Klaine, S.J., Alvarez, P.J.J., Batley, G.E., Fernandes, T.F., Handy, R.D., Lyon, D.Y., Mahendra, S., McLaughlin, M.J., Lead, J.R.: Nanomaterials in the environment: behavior, fate, bioavailability and effects. - Environ. Toxicol. Chem. 27: 1825-1851, 2008.
  17. Kumari, M., Mukherjee, A., Chandrasekaran, N.: Genotoxicity of silver nanoparticles in Allium cepa. - Sci. Total Environ. 407: 5243-5246, 2009. Go to original source...
  18. Ma, X., Geiser-Lee, J., Deng, Y., Kolmakov, A.: Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. - Sci. Total Environ. 408: 3053-3061, 2010. Go to original source...
  19. Nymark, P., Catalán, J., Suhonen, S., Järventaus, H., Birkedal, R., Clausen, P.A., Jensen, K.A., Vippola, M., Savolainen, K., Norppa, H.: Genotoxicity of polyvinylpyrrolidonecoated silver nanoparticles in BEAS 2B cells. - Toxicology 8: 38-48, 2013. Go to original source...
  20. Panda, K.K., Achary, V.M.M., Phaomie, G., Sahu, H.K., Parinandi, N.L., Panda, B.B.: Polyvinyl polypyrrolidone attenuates genotoxicity of silver nanoparticles synthesized via green route, tested in Lathyrus sativus L. root bioassay. - Mutag. Res. 806: 11-23, 2016. Go to original source...
  21. Park, H.J., Kim, S.H., Kim, S.J., Choi, S.H.: A new composition of nanosized silica-silver for control of various plant diseases. - Plant Pathol. J. 22: 295-302, 2006. Go to original source...
  22. Pesnya, D.S.: Cytogenetic effects of chitosan-capped silver nanoparticles in the Allium cepa test. - Caryologia 66: 275-281, 2013. Go to original source...
  23. Prokhorova, I.M., Kibrik, B.S., Pavlov, A.V., Pesnya, D.S.: Estimation of mutagenic effect and modifications of mitosis by silver nanoparticles. - Bull. exp. Biol. Med. 156: 255-259, 2013. Go to original source...
  24. Pulate, P.V., Ghurde, M.U., Deshmukh, V.R.: Cytological effect of the biological and chemical silver nano particle in Allium cepa (L). - Inter. J. Innov. biol. Sci. 1: 32-35, 2011.
  25. Rasouli, H., Hosein, M., Kamran, F., Mohammadzadeh, M.S., Khodarahmi, R.: Review: Plant cell cancer: may natural phenolic compounds prevent onset and development of plant cell malignancy? - Molecules 21: 1104-1129, 2016. Go to original source...
  26. Remédios, C., Rosário, F., Bastos, V.: Environmental nanoparticles interactions with plants: morphological, physiological, and genotoxic aspects. - J. Bot. 2012: 1-8, 2012. Go to original source...
  27. Savithramma, N., Ankanna, S., Bhumi, G.: Effect of nanoparticles on seed germination and seedling growth of Boswellia ovalifoliolata an endemic and endangered medicinal tree taxon. - Nano Vision 2: 61-68, 2012.
  28. Schmid, G. (ed): Nanoparticles: From Theory to Application. - Wiley, Weinheim 2010.
  29. Scolnick, D., Halazonetis, T.: Chfr defines a mitotic stress checkpoint that delays entry into metaphase. - Nature 406: 430-435, 2000. Go to original source...
  30. Shahrokh, S., Emtiazi, G.: Toxicity and unusual biological behavior of nanosilver on gram positive and negative bacteria assayed by microtiter-plate. - Eur. J. biol. Sci. 1: 28-31, 2009.
  31. Shimelis, D., Bantte, K., Feyissa, T.: Effects of polyvinyl pyrrolidone and activated charcoal to control effect of phenolic oxidation on in vitro culture establishment stage of micropropagation of sugarcane (Saccharum officinarum L.). - Adv. Crop Sci. Technol. 3: 184-187, 2015.
  32. Stals, H., Bauwens, S., Traas, J., Van Montagu, M., Engler, G., Inzé, D.: Plant CDC2 is not only targeted to the preprophase band, but is also co-located with the spindle, phragmoplast, and chromosomes. - FEBS Lett. 418: 229-234, 1997. Go to original source...
  33. Syu, Y.Y., Hung, J.H., Chen, J.C., Chuang, H.W.: Impacts of size and shape of silver nanoparticles on Arabidopsis plant growth and gene expression. - Plant Physiol. Biochem. 83: 57-64, 2014. Go to original source...
  34. Tank, J.G., Thaker, V.S.: Cyclin-dependent kinases and their role in regulation of plant cell cycle. - Biol. Plant. 55: 201-212, 2011. Go to original source...
  35. Vu, H.Q., El-Sayed, M.A., Ito, S-I., Yamauchi, N., Shigyo, M.: Discovery of a new source of resistance to Fusarium oxysporum, cause of Fusarium wilt in Allium fistulosum, located on chromosome 2 of Allium cepa aggregatum group. - Genome 55: 797-807, 2012. Go to original source...
  36. Yu, S-J., Yin, Y-G., Liu, J-F.: Silver nanoparticles in the environment. - Environ. Sci. Processes Impacts 15: 78-92, 2013. Go to original source...