Biologia plantarum 62:318-324, 2018 | DOI: 10.1007/s10535-018-0774-7

Characterization and primary functional analysis of Pinus densata miR171

B. Z. Hai1,2, Z. B. Qiu2,*, Y. Y. He2, M. M. Yuan2, Y. F. Li2
1 College of Information Engineering, Wuhan University of Technology, Wuhan, P.R. China
2 College of Life Science, Henan Normal University, Xinxiang, P.R. China

The miR171 is a conserved microRNA (miRNA) family and has been shown to participate in plant growth and development. However, the precise function of miR171 in Pinus densata remains largely unclear. Mature miR171 sequence comparison reveals high similarity between Arabidopsis thaliana and P. densata and the pre-miR171 could fold into a characteristic stem-loop hairpin structure. Genes encoding GRAS (GAI-RGA-SCR) family transcription factors and actin binding protein were identified as targets of pde-miR171 using a modified RNA ligase mediated 5' rapid amplification of cDNA ends (RLM-RACE). Furthermore, the interaction between pde-miR171 and Arabidopsis SCL6 (SCARECROW-LIKE6) was further validated through transient co-expression of both genes in Nicotiana benthamiana leaves. Next, results of real-time quantitative PCR demonstrated that the expression of pde-miR171 was significantly up-regulated in miR171-overexpressing plants than in wild-type plants, which was inversely correlated with the expression of Arabidopsis SCL6 genes. In addition, overexpression of pde-miR171 in Arabidopsis induced larger leaves and earlier flowering under long-day conditions compared with the wild type. The findings presented here suggest that miR171 derived from a P. densata precursor together with its target gene SCL6 may play important roles in the regulation of primary root growth, leaf shape, and flowering time in plants.

Keywords: Arabidopsis thaliana; Nicotiana benthamiana; RLM-RACE; SCARECROW-LIKE6
Subjects: miRNA; RLM-RACE; target genes; gene sequence; transgenic plants
Species: Pinus densata; Arabidopsis thaliana; Nicotiana benthamiana

Received: March 22, 2017; Revised: September 5, 2017; Accepted: October 6, 2017; Published: June 1, 2018Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Hai, B.Z., Qiu, Z.B., He, Y.Y., Yuan, M.M., & Li, Y.F. (2018). Characterization and primary functional analysis of Pinus densata miR171. Biologia plantarum62(2), 318-324. doi: 10.1007/s10535-018-0774-7.
Download citation

Supplementary files

Download filebpl-201802-0013_S1.pdf

File size: 308.62 kB

References

  1. Asha, S., Nisha, J., Soniya, E.V.: In silico characterization and phylogenetic analysis of two evolutionarily conserved miRNAs (miR166 and miR171) from black pepper (Piper nigrum L.). - Plant mol. Biol. Rep. 31: 707-718, 2013. Go to original source...
  2. Axtell, M.J., Bowman, J.L.: Evolution of plant microRNAs and their targets. - Trends Plant Sci. 13: 343-349, 2008. Go to original source...
  3. Bartel, D.: MicroRNAs: genomics, biogenesis, mechanism, and function. - Cell 116: 281-297, 2004. Go to original source...
  4. Bechtold, N., Pelletier, G.: In planta Agrobacterium-mediated transformation of adult Arabidopsis thaliana plants by vacuum infiltration methods. - Mol. Biol. 82: 259-266, 1998.
  5. Cuperus, J.T., Fahlgren, N., Carrington, J.C.: Evolution and functional diversification of miRNA genes. - Plant Cell 23: 431-442, 2011. Go to original source...
  6. Curaba, J., Talbot, M., Li, Z., Helliwell, C.: Over-expression of microRNA171 affects phase transitions and floral meristem determinancy in barley. - BMC Plant Biol. 13: 6, 2013. Go to original source...
  7. Fan, T., Li, X., Yang, W., Xia, K., Ouyang, J., Zhang, M.: Rice osa-miR171c mediates phase change from vegetative to reproductive development and shoot apical meristem maintenance by repressing four OsHAM transcription factors. - PLoS ONE 10: e0125833, 2015. Go to original source...
  8. Guo, H.S., Xie, Q., Fei, J.F., Chua, N.H.: MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for Arabidopsis lateral root development. - Plant Cell 17: 1376-1386, 2005. Go to original source...
  9. Hofferek, V., Mendrinna, A., Gaude, N., Krajinski, F., Devers, E.A.: MiR171h restricts root symbioses and shows like its target NSP2 a complex transcriptional regulation in Medicago truncatula. - BMC Plant Biol. 14: 199, 2014. Go to original source...
  10. Huang, W., Peng, S., Xian, Z., Lin, D., Hu, G., Yang, L., Ren, M., Li, Z.: Overexpression of a tomato miR171 target gene SlGRAS24 impacts multiple agronomical traits via regulating gibberellin and auxin homeostasis. - Plant Biotechnol. J. 15: 472-488, 2017. Go to original source...
  11. Li, W., Wang, T., Zhang, Y., Li, Y.: Overexpression of soybean miR172c confers tolerance to water deficit and salt stress, but increases ABA sensitivity in transgenic Arabidopsis thaliana. - J. exp. Bot. 67: 175-194, 2016. Go to original source...
  12. Li, W.F., Zhang, S.G., Han, S.Y., Wu, T., Zhang, J.H., Qi, L.W.: The post-transcriptional regulation of LaSCL6 by miR171 during maintenance of embryogenic potential in Larix kaempferi (Lamb.) Carr.. - Tree Genet. Genomes 10: 223-229, 2014. Go to original source...
  13. Livak, K.J., Schmittgen, T.D.: Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. - Methods 25: 402-408, 2001. Go to original source...
  14. Ma, Z.X., Hu, X.P., Cai, W.J., Huang, W.H., Zhou, X., Luo, Q., Yang, H.Q.: Arabidopsis miR171-targeted scarecrow-like proteins bind to GT cis-elements and mediate gibberellinregulated chlorophyll biosynthesis under light conditions. - PLoS Genet. 10: e1004519, 2014. Go to original source...
  15. McCurdy, D.W., Kovar, D.R., Staiger, C.J.: Actin and actinbinding proteins in higher plants. - Protoplasma 215: 89-104, 2001. Go to original source...
  16. Qiu, Z.B., Li, X.J., Zhao, Y.Y., Zhang, M.M., Wan, Y.L., Cao, D.C., Lu, S.F., Lin, J.X.: Genome-wide analysis reveals dynamic changes in microRNAs expression during vascular cambium development in Chinese fir (Cunninghamia lanceolata). - J. exp. Bot. 66: 3041-3054, 2015. Go to original source...
  17. Qiu, Z.B., Yuan, M.M., Hai, B.Z., Wang, L., Zhang, L.: Characterization and expression analysis of conserved miRNAs and their targets in Pinus densata. - Biol. Plant. 60: 427-434, 2016. Go to original source...
  18. Ronemus, M., Vaughn, M.W., Martienssen, R.A.: MicroRNAtargeted and small interfering RNA-mediated mRNA degradation is regulated by Argonaute, Dicer, and RNAdependent RNA polymerase in Arabidopsis. - Plant Cell 18: 1559-1574, 2006. Go to original source...
  19. Shivaraj, S.M., Dhakate, P., Mayee, P., Negi, M.S., Singh, A.: Natural genetic variation in MIR172 isolated from Brassica species. - Biol. Plant. 58: 627-640, 2014. Go to original source...
  20. Sunkar, R., Kapoor, A., Zhu, J. K.: Post-transcriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsisis mediated by down-regulation of miR398 and important for oxidative stress tolerance. - Plant Cell 18: 2051-2065, 2006. Go to original source...
  21. Voinnet, O.: Origin, biogenesis, and activity of plant microRNAs. - Cell 136: 669-687, 2009. Go to original source...
  22. Wan, L.C., Zhang, H.Y., Lu, S.F., Zhang, L., Qiu, Z.B., Zhao, Y.Y., Zeng, Q.Y., Lin, J.X.: Transcriptome-wide identification and characterization of miRNAs from Pinus densata. - BMC Genomics 13: 132, 2012. Go to original source...
  23. Wang, B., Mao, J.F., Gao, J., Zhao, W., Wang, X.R.: Colonization of the Tibetan Plateau by the homoploid hybrid pine Pinus densata. - Mol. Ecol. 18: 3796-3811, 2011. Go to original source...
  24. Wang, L., Mai, Y.X., Zhang, Y.C., Luo, Q., Yang, H.Q.: MicroRNA171c-targeted SCL6-II, SCL6-III, and SCL6-IV genes regulate shoot branching in Arabidopsis. - Mol. Plant 3: 794-806, 2010. Go to original source...
  25. Zhang, Y.: miRU: an automated plant miRNA target prediction server. - Nucl. Acids Res. 33: W701-W704 2005. Go to original source...
  26. Zheng, Y., Li, Y.F., Sunkar, R., Zhang, W.: SeqTar: an effective method for identifying microRNA guided cleavage sites from degradome of polyadenylated transcripts in plants. - Nucl. Acids Res. 40: e28, 2012. Go to original source...
  27. Zuker, M.: Mfold web server for nucleic acid folding and hybridization prediction. - Nucl. Acids Res. 13: 3406-3415, 2003. Go to original source...