Biologia plantarum 58:174-178, 2014 | DOI: 10.1007/s10535-013-0359-4

An assessment of Agropyron cristatum tolerance to cadmium contaminated soil

Q. Guo1, L. Meng1,*, P. C. Mao1, X. X. Tian1
1 Beijing Research and Development Center for Grass and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, P.R. China

A pot experiment was conducted in a greenhouse to assess the tolerance of Agropyron cristatum plants to cadmium contaminated soils (0, 5, 10, 25, 50, 100, 150, and 200 mg kg-1) for 100 d. Results indicate that Cd in concentrations of 5-50 mg kg-1 had no significant impact on growth, relative membrane permeability (RMP), lipid peroxidation measured as malondialdehyde (MDA) content, and chlorophyll (Chl) content relative to the control. Exposure of these plants to high concentrations of Cd (100-200 mg kg-1) caused a small reduction in growth and Chl content and a slight enhancement of RMP and MDA content compared with the control. In addition, superoxide dismutase (SOD) and peroxidase (POD) activities show an increasing trend with the increase of Cd content in soil. The Cd content in the roots was 4.7-6.1 times higher than that in the shoots under all Cd treatments suggesting that the plant can be classified as a Cd excluder. The translocation factor was low and similar at 25-200 mg kg-1 Cd treatments. In summary, A. cristatum plants tolerated Cd stress and might have potential for the phytoremediation of Cd contaminated soils.

Keywords: antioxidant enzyme; chlorophyll; malondialdehyde; membrane permeability; phytoremediation; translocation factor
Subjects: cadmium; antioxidants; chlorophyll content; malondialdehyde; growth; membrane permeability; superoxide dismutase; peroxidase; phytoremediation
Species: Agropyron cristatum

Received: December 18, 2012; Revised: April 29, 2013; Accepted: May 2, 2013; Published: March 1, 2014Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Guo, Q., Meng, L., Mao, P.C., & Tian, X.X. (2014). An assessment of Agropyron cristatum tolerance to cadmium contaminated soil. Biologia plantarum58(1), 174-178. doi: 10.1007/s10535-013-0359-4.
Download citation

References

  1. Alvarenga, P., Gonçalves, A.P., Fernandes, R.M., Varennes, A.D., Vallini, G., Duarte, E., Cunha-Queda A.C.: Evaluation of composts and liming materials in the phytostabilization of a mine soil using perennial ryegrass. - Sci. Total Environ. 406: 43-56, 2008. Go to original source...
  2. Apel, K., Hirt, H.: Reactive oxygen species: metabolism, oxidative stress, and signal transduction. - Annu. Rev. Plant Physiol. 55: 373-399. 2004. Go to original source...
  3. Belkhadi, A., Hediji, H., Abbes, Z., Nouairi, I., Barhoumi, Z., Zarrouk, M., Chaïbi, W., Djebali, W.: Effects of exogenous salicylic acid pretreatment on cadmium toxicity and leaf lipidcontent in Linum usitatissimum L. - Ecotoxicol. Environ. Safety 73: 1004-1011, 2010. Go to original source...
  4. Bočová, B., Huttová, J., Liptáková, Ľ., Mistrík, I., Ollé, M., Tamás, L.: Impact of short-term cadmium treatment on catalase and ascorbate peroxidase activities in barley root tips. - Biol. Plant. 56: 724-728, 2012.
  5. Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. - Anal. Biochem. 72: 248-254, 1976. Go to original source...
  6. Brunner, I., Luster, J., Günthardt-Goerg, M.S., Frey, B.: Heavy metal accumulation and phytostabilisation potential of tree fine roots in a contaminated soil. - Environ. Pollut. 152: 559-568, 2008. Go to original source...
  7. Chance, B., Maehly, A.C.: Assay of catalase and peroxidases. - Method. Enzymol. 11: 764-775, 1955. Go to original source...
  8. Che, Y.H., Li, H.J., Yang, Y.P., Yang, X.M., Li, X.Q., Li, L.H.: On the use of SSR markers for the genetic characterization of the Agropyron cristatum (L.) Gaertn. in northern china. - Genet. Resour. Crop Evol. 55: 389-396, 2008. Go to original source...
  9. Chien, H., Wang, J., Lin, C., Kao, C.: Cadmium toxicity of rice leaves is mediated through lipid peroxidation. - Plant Growth Regul. 33: 205-213, 2001. Go to original source...
  10. Cobbett, C., Goldsbrough, P.: Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. - Annu. Rev. Plant Biol. 53: 159-182, 2002. Go to original source...
  11. Dhindsa, R.S., Plumb-Dhindsa, P., Thorpe, T.A.: Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. - J. exp. Bot. 32: 93-101, 1981. Go to original source...
  12. Domínguez, M.T., Madrid, F., Marañón, T., Murillo, J.M.: Cadmium availability in soil and retention in oak roots: potential for phytostabilization. - Chemosphere 76: 480-486, 2009. Go to original source...
  13. Ekmekçi, Y., Tanyolac, D., Ayhan, B.: Effects of cadmium on antioxidant enzyme and photosynthetic activities in leaves of two maize cultivars. - J. Plant Physiol. 165: 600-611, 2008. Go to original source...
  14. Gibon, Y., Bessieres, M.A., Larher, F.: Is glycine betaine a non-compatible solute in higher plants that do not accumulate it? - Plant Cell Environ. 20: 329-340, 1997. Go to original source...
  15. Hall, L.J.: Cellular mechanism for heavy metal detoxification and tolerance. - J. exp. Bot. 53: 1-11, 2002. Go to original source...
  16. Jiang, Y., Huang, B.: Effects of calcium and antioxidant metabolism and water relations associated with heat tolerance in two cool-season grasses. - J. exp. Bot. 355: 341-349, 2001. Go to original source...
  17. Kim, D.Y., Bovet, L., Maeshima, M., Martinoia, E., Lee, Y.S.: The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heavy metal resistance. - Plant J. 50: 207-218, 2007. Go to original source...
  18. Krantev, A., Yordanova, R., Janda, T., Szalai, G., Popova, L.: Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants. - J. Plant Physiol. 165: 920-931, 2008. Go to original source...
  19. Lozano-Rodriguez, E., Hernandez, L.E., Bonay, P., Carpena-Ruiz, R.O.: Distribution of cadmium in shoot and root tissues of maize and pea plants: physiological disturbances. - J. exp. Bot. 48: 123-128, 1997. Go to original source...
  20. Ma, Q., Yue, L.J., Zhang, J.L., Wu, G.Q., Bao, A.K., Wang, S.M.: Sodium chloride improves photosynthesis and water status in the succulent xerophyte Zygophyllum xanthoxylum. - Tree Physiol. 32: 4-13, 2012. Go to original source...
  21. Martin, S. R., Llugany, M., Barceló, J., Poschenrieder, C.: Cadmium exclusion a key factor in differential Cd-resistance in Thlaspi arvense ecotypes. - Biol. Plant. 56: 729-734, 2012. Go to original source...
  22. Mendez, M.O., Maier, R.M.: Phytostabilization of mine tailings in arid and semiarid environments - an emerging remediation technology. - Environ. Health Perspect. 116: 278-283, 2008. Go to original source...
  23. Metwally, A., Finkemeier, I., Georgi, M., Dietz, K.J.: Salicylic acid alleviates the cadmium toxicity in barley seedlings. - Plant Physiol. 132: 272-281, 2003. Go to original source...
  24. Padmavathiamma, PK., Li, L.Y.: Phytoremediation technology: hyper-accumulation of metals in plants. - Water Air Soil Pollut. 184: 105-126, 2007. Go to original source...
  25. Podazza, G., Arias, M., Prado, F.E.: Cadmium accumulation and strategies to avoid its toxicity in roots of the citrus rootstock Citrumelo. - J. Hazard. Mater. 215-216: 83-89, 2012. Go to original source...
  26. Sanita di Toppi, L., Gabrielli, R.: Response to cadmium in higher plants. - Environ. exp. Bot. 41: 105-130, 1999. Go to original source...
  27. Sgherri, C., Cosi, E., Navari-Izzo, F.: Phenols and antioxidative status of Raphanus sativus grown in copper excess. - Physiol. Plant. 118: 21-28, 2003. Go to original source...
  28. Shi, G.R., Cai, Q.S., Liu, Q.Q., Wu, L.: Salicylic acid-mediated alleviation of cadmium toxicity in hemp plants in relation to Acta Physiol.Plant. 31: 969-977, 2009.
  29. Simon, L.: Stabilization of metals in acidic mine soil with amendments and red fescue (Festuca rubra L.) growth. - Environ. Geochem. Health 27: 289-300, 2005. Go to original source...
  30. Tao, Y.M., Chen, Y.Z., Tan, T., Liu, X.C., Yang, D.L., Liang, S.C.: Comparison of antioxidant responses to cadmium and lead in Bruguiera gymnorrhiza seedlings. - Biol. Plant. 56: 149-152, 2012. Go to original source...
  31. Tian, S.K., Lu, L. L., Yang, X.E., Huang, H.G., Wang, K., Brown, P.H.: Root adaptations to cadmium-induced oxidative stress contribute to Cd tolerance in the hyperaccumulator Sedum alfredii. - Biol. Plant. 56: 344-350, 2012. Go to original source...
  32. Wen, L., Fu, D.F.: The phytoremediation of ryegrass on multiple heavy metal soils by two reinforced methods. - China Environ. Sci. 28: 786-790, 2008.
  33. Zhang, X.F., Xia, H.P., Li, Z.A., Zhuang, P., Cao, B.: Potential of four forage grasses in remediation of Cd and Zn contaminated soils. - Bioresour. Technol. 101: 2063-2066, 2010. Go to original source...