Biologia Plantarum 63: 548-555, 2019 | DOI: 10.32615/bp.2019.097

Physiological and molecular responses of two Chinese cabbage genotypes to heat stress

Q. SONG1,2, F. YANG1,3, B. CUI1,2, J. LI1, Y. ZHANG1, H. LI1, N. QIU2,3, F. WANG1,*, J. GAO1,*
1 Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences; Shandong Key Laboratory of Greenhouse Vegetable Biology and Shandong Branch of National Vegetable Improvement Center, Jinan, 250100, P.R. China
2 College of Life Sciences, Shandong Normal University, Jinan, 250014, P.R. China
3 College of Life Sciences, Qufu Normal University, Qufu, 273165, P.R. China

A comparative investigation of heat stress-mediated physiological and biochemical parameters in conjunction with the expression analysis of heat shock transcription factors (BrHSF) from two different Chinese cabbage genotypes was done to understand the mechanism of heat tolerance. Our results show that the heat-tolerant (2013-33) genotype had a smaller relative electric conductivity, a less malondialdehyde content and a higher maximal efficiency of photosystem II photochemistry than the heat-sensitive (AM160) genotype, and was able to develop the leaf head under heat stress, whereas 'AM160' flailed to develop it. The results also indicate that '2013-33' accumulated a higher amount of soluble sugars and protein under heat stress condition than 'AM160'. However, it warrants to mention that proline content and antioxidant enzymes, such as the peroxidase, catalase, and superoxide dismutase activities, in the 2013-33 genotype under HS were recorded, being significantly lower than in 'AM160'. Additionally, the expression profile of BrHSF genes was checked and classified to three main groups, (i) HS-induced HSFs expressed in both genotypes ( group I), (ii) suppressed by HS in both genotypes (groupII), and (iii) genotype-specific expression of HSFs (repressed in the AM160 heat-sensitive genotype whereas induced in the '2013-33' heat tolerance genotype; group III). Furthermore, the result of promoter analysis shows that group III BrHSFs, i.e., 23, 30, and 33 gene promoter regions possessed a difference between '2013-33' and 'AM160'. In conclusion, the results of our study identify that '2013-33' had more heat tolerance than 'AM160' because of a higher accumulation of sugar and protein and an enhanced expression of group III HSFs, and the differential response of group III HSFs to HS in these two genotypes may be because of a promoter sequence difference. The study provides us a clue towards understanding the mechanism of heat tolerance in Chinese cabbage and offers a valuable source for further improvement of heat tolerance in Chinese cabbage.

Keywords: antioxidants, chlorophyll fluorescence, heat shock, malondialdehyde, proline, proteins, sugars, transcription factor.

Received: October 15, 2018; Revised: December 29, 2018; Accepted: January 2, 2019; Published online: July 29, 2019Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
SONG, Q., YANG, F., CUI, B., LI, J., ZHANG, Y., LI, H., ... GAO, J. (2019). Physiological and molecular responses of two Chinese cabbage genotypes to heat stress. Biologia plantarum63, 548-555. doi: 10.32615/bp.2019.097.
Download citation

Supplementary files

Download fileSong5979 Suppl.pdf

File size: 432.49 kB

References

  1. Arora, R., Pitchay, D.S., Bearce, B.C.: Water stress induced heat tolerance in geranium leaf tissues: A possible linkage through stress proteins? - Physiol. Plant. 103: 24-34, 1998. Go to original source...
  2. Asthir, B.: Mechanisms of heat tolerance in crop plants. - Biol. Plant. 59: 620-628, 2015. Go to original source...
  3. Baniwal, S.K., Bharti, K., Chan, K.Y., Fauth, M., Ganguli, A., Kotak, S., Mishra, S.K., Nover, L., Port, M., Scharf, K.D., Tripp, J., Weber, C., Zielinski, D., von Koskull-Döring, P.: Heat stress response in plants: a complex game with chaperones and more than twenty heat stress transcription factors. -J. Biosci. 29: 471-487, 2004. Go to original source...
  4. Bates, L.S., Waldren, R.P., Teare, I.D.: Rapid determination of free proline for water stress studies. - Plant Soil 39: 205-207, 1973. Go to original source...
  5. Beyer, W.F., Fridovich, I.: Assaying for superoxide dismutase activity: some large consequences of minor changes in condition. - Anal. Biochem. 161: 559-566, 1987. Go to original source...
  6. Bita, C.E., Gerats, T.: Plant tolerance to high temperature in a changing environment: Scientific fundamentals and production of heat stress-tolerant crops. Front. Plant Sci. 4: 273, 2013. Go to original source...
  7. Bokszczanin, K.L., Solanaceae Pollen Thermotolerance Initial Training Network (SPOT-ITN) Consortium, Fragkostefanakis, S.: Perspectives on deciphering mechanisms underlying plant heat stress response and thermotolerance. - Front. Plant Sci. 4: 315, 2013. Go to original source...
  8. Bradford, M.M.: A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein-dye binding. - Anal. Biochem. 72: 248-254, 1976. Go to original source...
  9. Chakraborty, U., Tongden, C.: Evaluation of heat acclimation and salicylic acid treatments as potent inducers of thermotolerance in Cicer arietinum L. - Curr. Sci. 89: 384-389, 2005.
  10. Chance, B., Maehly, A.C.: Assay of catalase and peroxidases. In: Maehly, A.C. (ed.): Methods in enzymology. - Vol. 2 Pp. 764-775. Acadamic Press, New York 1955. Go to original source...
  11. Chu, T.M., Aspinall, D., Paleg, L.G.: Stress metabolism. VI. Temperature stress and the accumulation of proline in barley and radish. - Aust. J. Plant Physiol. 1: 87-97, 1974. Go to original source...
  12. Cramer, G.R., Urano, K., Delrot, S., Pezzotti, M., Shinozaki, K.: Effects of abiotic stress on plants: a system biology perspective. - BMC Plant Biol. 11: 163, 2011. Go to original source...
  13. Cvikrová, M., Gemperlová, L., Dobrá, J., Martincová, O., Prásil, I.T., Gubis, J., Vanková, R.: Effect of heat stress on polyamine metabolism in proline-over-producing tobacco plants. - Plant Sci. 182: 49-58, 2012. Go to original source...
  14. Czarnecka-Verner, E., Yuan, C.X., Scharf, K.D., Englich, G., Gurley, W.B.: Plants contain a novel multi-member class of heat shock factors without transcriptional activator potential. - Plant Mol. Biol. 43: 459-471, 2000. Go to original source...
  15. Hasanuzzaman, M., Nahar, K., Alam, M.M., Roychowdhury, R., Fujita, M.: Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. - Int. J. Mol. Sci. 14: 9643-9684, 2013. Go to original source...
  16. Hodges, D.M., DeLong, J.M., Forney, C.F., Prange R.K.: Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. - Planta 207: 604-611, 1999. Go to original source...
  17. Hua, X.J., Van De Cotte, B., Van Montagu, M., Verbruggen, N.: The 5' untranslated region of the At-P5R gene is involved in both transcriptional and post-transcriptional regulation. - Plant J. 26: 157-169, 2001. Go to original source...
  18. Iba, K.: Acclimative response to temperature stress in higher plants: Approaches of gene engineering for temperature tolerance. - Annu. Rev. Plant Biol. 53: 225-245, 2002. Go to original source...
  19. Ikeda, M., Mitsuda, N., Ohme-Takagi, M.: Arabidopsis HsfB1 and HsfB2b act as repressors of the expression of heat-inducible Hsfs but positively regulate the acquired thermo tolerance. - Plant Physiol. 157: 1243-1254, 2011. Go to original source...
  20. Jermyn, M.A.: Increasing the sensitivity of the anthrone method for carbohydrate. - Anal. Biochem. 68: 332-335, 1975. Go to original source...
  21. Jones, P.D., New, M., Parker, D.E., Martin, S., Rigor, I.G.: Surface air temperature and its changes over the past 150 years. - Rev. Geophys. 37: 173-199, 1999. Go to original source...
  22. Ke, G.: [Chinese Cabbage Breeding.] - China Agricul. Press, - Beijing 2010. [In Chin.]
  23. Knöraer, O.C., Durner, J., Böger, P.: Alterations in the antioxidative system of suspension-cultured soybean cells (Glycine max) induced by oxidatice stress. - Physiol. Plant. 97: 388-396, 1996.
  24. Kotak, S., Port, M., Ganguli, A., Bicker, F., von Koskull-Doring, P.: Characterization of C-terminal domains of Arabidopsis heat stress transcription factors (Hsfs) and identification of a new signature combination of plant class A Hsfs with AHA and NES motifs essential for activator function and intracellular localization. - Plant J. 39: 98-112, 2004. Go to original source...
  25. Kotak, S., Vierling, E., Bäumlein, H., von Koskull-Döring P.: A novel transcriptional cascade regulating expression of heat stress proteins during seed development of Arabidopsis. - Plant Cell 19: 182-195, 2007. Go to original source...
  26. Kumazaki, A., Suzuki, N.: Enhanced tolerance to a combination of heat stress and drought in Arabidopsis plants deficient in ICS1 is associated with modulation of photosynthetic reaction center proteins. - Physiol. Plant. 165: 232-246, 2019. Go to original source...
  27. Li, H., Liu, S.S., Yi, C.Y., Wang, F., Zhou, J., Xia, X.J., Shi, K., Zhou, Y.H., Yu JQ.: Hydrogen peroxide mediates abscisic acid-induced HSP70 accumulation and heat tolerance in grafted cucumber plants. - Plant Cell Environ. 37: 2768-2780, 2014. Go to original source...
  28. Li, P.S., Yu, T.F., He, G.H., Chen, M., Zhou, Y.B., Chai, S.C., Xu, Z.S., Ma, Y.Z.: Genome-wide analysis of the Hsf family in soybean and functional identification of GmHsf-34 involvement in drought and heat stresses. - BMC Genomics 15: 1009, 2014. Go to original source...
  29. Lin, Y.X., Jiang, H.Y., Chu, Z.X., Tang, X.L., Zhu, S.W., Cheng, B.J.: Genome-wide identification, classification and analysis of heat shock transcription factor family in maize. - BMC Genomics 12: 76, 2011. Go to original source...
  30. Liu, H.C., Liao, H.T., Charng, Y.Y.: The role of class A1 heat shock factors (HSFA1s) in response to heat and other stresses in Arabidopsis. - Plant Cell Environ. 34: 738-751, 2011. Go to original source...
  31. Liu, L., Xu, W., Hu, X., Liu, H., Lin, Y.: W-box and G-box elements play important roles in early senescence of rice flag leaf. - Sci. Rep. 6: 20881, 2016. Go to original source...
  32. Lobell, D.B., Burke, M., Tebaldi, C., Mastrandrea, M.D., Falcon, W.P., Naylor, R.L.: Prioritizing climate change adaptation needs for food security in 2030. - Science 319: 607-610, 2008. Go to original source...
  33. Lohmann, C., Eggers-Schumacher, G., Wunderlich, M., Schöffl, F.: Two different heat shock transcription factors regulate immediate early expression of stress genes in Arabidopsis. - Mol. Genet. Genom. 271: 11-21, 2004. Go to original source...
  34. Long, S.P., Ort, D.R.: More than taking the heat: Crops and global change. - Curr. Opin. Plant Biol. 13: 241-248, 2010. Go to original source...
  35. Luo, S., Li, Z., Zhou, W., Keniehi, H., Takehiko, N.: [Technique for identification of heat tolerance in heading Chinese cabbage.] - China Vegetables 2: 16-18, 1996. [In Chin.]
  36. Mishra, N., Srivastava, A.P., Esmaeili, N., Hu, W., Shen, G.: Overexpression of the rice gene OsSIZ1 in Arabidopsis improves drought-, heat-, and salt-tolerance simultaneously. - PLoS ONE 13: e0201716, 2018. Go to original source...
  37. Mishra, S.K., Tripp, J., Winkelhaus, S., Tschiersch, B., Theres, K., Nover, L., Scharf, K.D.: In the complex family of heat stress transcription factors, HsfA1 has a unique role as master regulator of thermotolerance in tomato. - Genes Dev. 16:1555-1567, 2002. Go to original source...
  38. Nishizawa-Yokoi, A., Nosaka, R., Hayashi, H., Tainaka, H., Maruta, T., Tamoi, M., Ikeda, M., Ohme-Takagi, M., Yoshimura, K., Yabuta, Y., Shigeoka, S.: HsfA1d and HsfA1e involved in the transcriptional regulation of HsfA2 function as key regulators for the Hsf signaling network in response to environmental stress. - Plant Cell Physiol. 52: 933-945, 2011. Go to original source...
  39. Nover, L., Bharti, K., Döring, P., Mishra, S.K., Ganguli, A., Scharf, K.D.: Arabidopsis and the heat stress transcription factor world: how many heat stress transcription factors do we need? - Cell Stress Chaperon. 6: 177-189, 2001. Go to original source...
  40. Ortiz, C., Cardemil, L.: Heat-shock responses in two leguminous plants: a comparative study. - J. exp. Bot. 52: 1711-1719, 2001.
  41. Qiu, N., Liu, Q., Li, J., Zhang, Y., Wang, F., Gao, J.: Physiological and transcriptomic responses of Chinese cabbage (Brassica rapa L. ssp. Pekinensis) to salt stress. - Int. J. mol. Sci. 18: 1953, 2017.
  42. Qu, A.L., Ding, Y.F., Jiang, Q., Zhu, C.: Molecular mechanisms of the plant heat stress response. - Biochem. Biophys. Res. Commun. 432: 203-207, 2013. Go to original source...
  43. Quinn, P.J.: Effects of temperature on cell membranes. - Symp. Soc. exp. Biol. 42: 237-258, 1988.
  44. Rivero, R.M., Ruiz, J.M., Romero, L. M.: Importance of N source on heat stress tolerance due to the accumulation of proline and quaternary ammonium compounds in tomato plants. - Plant Biol. 6: 702-707, 2004. Go to original source...
  45. Rizhsky, L., Liang, H. J., Shuman, J., Shulaev,V., Davletova, S., Mittler, R.: When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. - Plant Physiol. 134: 1683-1696, 2004. Go to original source...
  46. Scharf, K.D., Berberich, T., Ebersberger, I., Nover, L.: The plant heat stress transcription factor (Hsf) family: Structure, function and evolution. - Biochim. Biophys. Acta 1819: 104-119, 2012.
  47. Scharf, K.D., Rose. S., Zott, W., Schöffl, F., Nover, L.: Three tomato genes code for heat stress transcription factors with a region of remarkable homology to the DNA-binding domain of the yeast HSF. - EMBO J. 9: 4495-4501, 1990. Go to original source...
  48. Song, X., Liu, G., Duan, W., Liu, T., Huang, Z.,Ren, J., Li, Y., Hou, X.: Genomewide identifcation, classifcation and expression analysis of the heat shock transcription factor family in Chinese cabbage. - Mol. Genet. Genom. 289: 541-551, 2014. Go to original source...
  49. Sun, C.W., Callis, J.: Independent modulation of Arabidopsis thaliana polyubiquitin mRNAs in different organs of and inresponse to environmental changes. - Plant J. 11: 1017-1027, 1997. Go to original source...
  50. Tang, R., Zhu, W., Song, X., Lin, X., Cai, J., Wang, M., Yang, Q.: Genome-wide identification and function analyses of heat shock transcription factors in potato. - Front. Plant Sci. 7: 490, 2016. Go to original source...
  51. Wahid, A.: Physiological implications of metabolite biosynthesis for net assimilation and heat-stress tolerance of sugarcane (Saccharum officinarum) sprouts. - J. Plant Res. 120: 219-228, 2007. Go to original source...
  52. Wahid, A., Close, T.J.: Expression of dehydrins under heat stress and their relationship with water relations of sugarcane leaves. - Biol. Plant. 51: 104-109, 2007. Go to original source...
  53. Wahid, A., Gelani, S., Ashraf, M., Foolad, M.R.: Heat tolerance in plants: An overview. - Environ. exp. Bot. 61: 199-223, 2007. Go to original source...
  54. Wang, H.S., Yu, C., Zhu, Z.J., Yu, X.C.: Overexpression in tobacco of a tomato GMPase gene improves tolerance to both low and high temperature stress by enhancing antioxidation capacity. - Plant Cell Rep. 30: 1029-1040, 2011. Go to original source...
  55. Wang, X., Guo, C., Peng, J., Li, C., Wan, F., Zhang, S., Zhou, Y., Yan, Y.,Qi, L.,Sun, K., Yang, S., Gong, Z., Li, J.: ABRE-BINDING FACTORS play a role in the feedback regulation of ABA signaling by mediating rapid ABA induction of ABA co-receptor genes. - New Phytol. 221: 341-355, 2019. Go to original source...
  56. Wang, Z., Yu, L., Cao, D., Zhou, B., Yang, J.: [The effect to several physiological indexes by short-term high temperature in Chinese cabbage.] - Acta Agr. Boreali-occidental. Sinica 14: 82-85, 2005. [In Chin.]
  57. Wu, G., Cao,W., Wang, Y., Jiang, Y., Zhang, L.: [Cell membrane thermostability, protective enzymes and heat tolerance in Chinese cabbage.] - Acta Hort. Sinica 22: 353-358, 1995. [In Chin.]
  58. Xue, G.P., Drenth, J., McIntyre, C.L.: TaHsfA6f is a transcriptional activator that regulates a suite of heat stress protection genes in wheat (Triticum aestivum L.) including previously unknown Hsf targets. - J. exp. Bot. 66: 1025-1039, 2015. Go to original source...
  59. Yang, F., Liu, H., Qiu, N., Wang, F., Gao, J.: [Advances in research of heat resistance mechanism of Chinese cabbage.] - Shandong Agricul. Sci. 49: 149-153, 2017. [In Chin.]
  60. Yang, X., Zhu, W., Zhang, H., Liu, N., Tian, S.: Heat shock factors in tomatoes: genome-wide identification, phylogenetic analysis and expression profiling under development and heat stress. - Peer J. 4: e1961, 2016. Go to original source...
  61. Ye, C., Ke, Y., Chen, W.: [A study on the physiology of heat tolerance in Chinese cabbage II. Metabolism of water and proteins in leaves and heat tolerance.] - J. Fujian Agricul. Univ. 25: 490-493, 1996. [In Chin.]
  62. Yoshida, T., Fujita, Y., Maruyama, K., Mogami, J., Todaka, D., Shinozaki, K., Yamaguchi-Shinozaki, K.: Four Arabidopsis AREB/ABFtranscriptionfactors function predominantly in gene expressiondownstream of SnRK2 kinases in abscisic acid signalling in response to osmotic stress. - Plant Cell Environ. 38: 35-49, 2015. Go to original source...
  63. Yoshida, T., Fujita, Y., Sayama, H., Kidokoro, S., Maruyama, K., Mizoi, J., Shinozaki, K., Yamaguchi-Shinozaki, K.: AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation. - Plant J. 61: 672-685, 2010. Go to original source...
  64. Yoshiba, Y., Kiyosue, T., Katagiri, T., Ueda, H., Mizoguchi, T., Yamaguchi-Shinozaki, K., Wada, K., Harada, Y., Shinozaki, K.: Correlation between the induction of a gene for Δ1-pyrroline-5-carboxylate synthetase and the accumulation of proline in Arabidopsis thaliana under osmotic stress. - Plant J. 7: 751-760, 1995. Go to original source...
  65. Zhang, S., Xu, Z.S., Li, P., Yang, L., Wei, Y., Chen, M., Li, L., Zhang, G., Ma, Y.: Overexpression of TaHSF3 in transgenic Arabidopsis enhances tolerance to extreme temperatures. - Plant mol. biol. Rep. 31: 688-697, 2013. Go to original source...