Biologia Plantarum 63: 59-69, 2019 | DOI: 10.32615/bp.2019.008

The homoeologous genes encoding C24-sterol methyltransferase 1 in Triticum aestivum: structural characteristics and effects of cold stress

A. Renkova1, J. Valitova1, H. Schaller2, F. Minibayeva1,3,*
1 Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan 420111, Russia
2 Institute of Plant Molecular Biology, CNRS, F-67083 Strasbourg, France
3 Kazan (Volga Region) Federal University, Kazan 420008, Russia

A unique structural feature of plant sterols is the presence of a 24-alkyl group in the sterol side chain, which is synthesized by C24-sterol methyltransferase (SMT). Here we report for the first time that the bread wheat genome (AABBDD) contains at least three homoeologous genes encoding C24-sterol methyltransferase 1. While these copies have similar coding regions, they differ markedly in the nucleotide sequences of their non-coding regions. Sequencing de novo of the promoter regions of the TaSMT1 homoeologs demonstrated the occurrence of common and specific stress-sensitive cis-elements such as LTR, the cis-element involved in low temperature response. These cis-elements, along with other factors, determine the differences in the effects of stress on the expression of homoeologous TaSMT1 genes. For example, TaSMT1-5A is constitutively expressed in the roots and leaves, while TaSMT1-4D gene is highly stress-responsive. Another important enzyme involved in sterol biosynthesis is C22-sterol desaturase, which converts β-sitosterol into stigmasterol. This enzyme is encoded by homoeologous TaCYP710A8 genes, which, in contrast to TaSMT1, are all up-regulated in response to stress. Cold-induced expression of TaCYP710A8 is greater in roots than in leaves. This may be due to the higher cold sensitivity of the roots and the necessity to increase the amount of stigmasterol known as a “stress sterol”. Our findings suggest that the existence of homoeologous genes of sterol biosynthesis in polyploid plants supports the diversity of genetic mechanisms of sterol-mediated response of plants to stresses.

Keywords: gene expression, C22-sterol desaturase, cis-elements

Accepted: November 13, 2018; Prepublished online: August 2, 2019; Published online: January 19, 2019Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Renkova, A., Valitova, J., Schaller, H., & Minibayeva, F. (2019). The homoeologous genes encoding C24-sterol methyltransferase 1 in Triticum aestivum: structural characteristics and effects of cold stress. Biologia plantarum63, 59-69. doi: 10.32615/bp.2019.008.
Download citation

Supplementary files

Download fileRENKOVA5582Suppl.pdf

File size: 356.92 kB

References

  1. Ashikawa, I.: Gene-associated CpG islands in plants as revealed by analyses of genomic sequences. - Plant J. 26: 617-625, 2001. Go to original source...
  2. Aramrak, A., Kidwell, K.K., Steber, C.M., Burke, I.C.: Molecular and phylogenetic characterization of the homoeologous EPSP synthase genes of allohexaploid wheat, Triticum aestivum (L.). - BMC Genomics 16: 844, 2015. Go to original source...
  3. Arnqvist, L., Persson, M., Jonsson, L., Dutta, P.C., Sitbon, F.: Overexpression of CYP710A1 and CYP710A4 in transgenic Arabidopsis plants increases the level of stigmasterol at the expense of sitosterol. - Planta 227: 309-317, 2008.
  4. Benveniste, P.: Biosynthesis and accumulation of sterols. - Annu. Rev. Plant Biol. 55: 429-457, 2004. Go to original source...
  5. Bonneau, L., Gerbeau-Pissot, P., Thomas, D., Der, C., Lherminier, J., Bourque, S., Roche, Y., Simon-Plas, F.: Plasma membrane sterol complexation, generated by filipin, triggers signaling responses in tobacco cells. - Biochim. biophys. Acta 1798: 2150-2159, 2010. Go to original source...
  6. Boutté, Y., Grebe, M.: Cellular processes relying on sterol function in plants. - Curr. Opin. Plant Biol. 12: 705-713, 2009. Go to original source...
  7. Bouvier-Navé, P., Husselstein, T., Desprez, T., Benveniste, P.: Identification of cDNAs encoding sterol methyl-transferases involved in the second methylation step of plant sterol biosynthesis. - Eur. J. Biochem. 246: 518-529, 1997. Go to original source...
  8. Carland, F., Fujioka, S., Nelson, T.: The sterol methyl-transferases SMT1, SMT2, and SMT3 influence Arabidopsis development through nonbrassinosteroid products. - Plant Physiol. 153: 741-756, 2010. Go to original source...
  9. Carland, F., Fujioka, S., Takatsuto, S., Yoshida, S., Nelson, T.: The identification of CVP1 reveals a role for sterols in vascular patterning. - Plant Cell 14: 2045-2058, 2002. Go to original source...
  10. Devos, K.M., Dubcovsky, J., Dvořák, J., Chinoy, C.N., Gale, M.D.: Structural evolution of wheat chromosomes 4A, 5A, and 7B and its impact on recombination. - Theor. sppl. Genet. 91: 282-288, 1995. Go to original source...
  11. Diener, A.C., Li, H., Zou, W.X., Whoriskey, W.J., Nes, W.D., Fink, G.R.: STEROL METHYLTRANSFERASE 1 controls the level of cholesterol in plants. - Plant Cell 12: 853-870, 2000. Go to original source...
  12. Fowler, S., Thomashow, M.F.: Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. - Plant Cell 14: 1675-1690, 2002. Go to original source...
  13. Haubrich, B.A., Collins, E.K., Howard, A.L., Wang, Q., Snell, W.J., Miller, M.B., Thomas, C.D., Pleasant, S.K., Nes, W.D.: Characterization, mutagenesis and mechanistic analysis of an ancient algal sterol C24-methyltransferase: Implications for understanding sterol evolution in the green lineage. - Phytochemistry 113: 64-72, 2015. Go to original source...
  14. Higo, K., Ugawa, Y., Iwamoto, M., Korenaga, T.: Plant cis-acting regulatory DNA elements (PLACE) database. - Nucl. Acids Res. 27: 297-300, 1999. Go to original source...
  15. Huang, X.Q., Brûlé-Babel, A. Development of genome-specific primers for homoeologous genes in allopolyploid species: the waxy and starch synthase II genes in allohexaploid wheat (Triticum aestivum L.) as examples. - BMC Res. Notes 3: 140, 2010. Go to original source...
  16. Kagan, R.M., Clarke, S.: Widespread occurrence of three sequence motifs in diverse S-adenosylmethionine-dependent methyltransferases suggests a common structure for these enzymes. - Arch. Biochem. Biophys. 310: 417-427, 1994. Go to original source...
  17. Lescot, M., Déhais, P., Moreau, Y., De Moor, B., Rouzé, P., Rombauts, S.: PlantCARE: a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. - Nucl. Acids Res. 30: 325-327, 2002. Go to original source...
  18. Li, C.R., Zhou, Z., Lin, R.X., Zhu, D., Sun, Y.N., Tian, L.L., Li, L., Gao, Y., Wang, S.Q.: -Sitosterol decreases irradiation-induced thymocyte early damage by regulation of the intracellular redox balance and maintenance of mitochondrial membrane stability. - J. Cell Biochem. 102: 748-758, 2007. Go to original source...
  19. Ma, J., Stiller, J., Berkman, P.J., Wei, Y., Rogers, J., Feuillet, C., Dolezel, J., Mayer, K.F., Eversole, K., Zheng, Y.L., Liu, C.: Sequence-based analysis of translocations and inversions in bread wheat (Triticum aestivum L.). - PLoS ONE 8: e79329, 2013. Go to original source...
  20. Marcussen, T., Sandve, S.R., Heier, L., Spannagl, M., Pfeifer, M., Jakobsen, K.S., Wulff, B.B., Steuernagel, B., Mayer, K.F., Olsen, O.A.: Ancient hybridizations among the ancestral genomes of bread wheat. - Science 345: 1250092, 2014. Go to original source...
  21. Men, S., Boutté, Y., Ikeda, Y., Li, X., Palme, K., Stierhof, Y.D., Hartmann, M.A., Moritz, T., Grebe, M.: Sterol-dependent endocytosis mediates post-cytokinetic acquisition of PIN2 auxin efflux carrier polarity. - Nat. cell. Biol. 10: 237-244, 2008. Go to original source...
  22. Morikawa, T., Mizutani, M., Aoki, N., Watanabe, B., Saga, H., Saito, S., Oikawa, A., Suzuki, H., Sakurai, N., Shibata, D., Wadano, A., Sakata, K., Ohta, D.: Cytochrome P450 CYP710A encodes the sterol C-22 desaturase in Arabidopsis and tomato. - Plant Cell 18: 1008-1022, 2006. Go to original source...
  23. Nakamoto, M., Schmit, A.C., Heintz, D., Schaller, H., Ohta, D.: Diversification of sterol methyltransferase enzymes in plants and a role for β-sitosterol in oriented cell plate formation and polarized growth. - Plant J. 84: 860-874, 2015. Go to original source...
  24. Neelakandan, A.K., Song, Z., Wang, J., Richards, M.H., Wu, X., Valliyodan, B., Nguyen, H.T., Nes, W.D.: Cloning, functional expression and phylogenetic analysis of plant sterol 24C-methyltransferases involved in sitosterol biosynthesis. - Phytochemistry 70: 1982-1998, 2009.
  25. Neelakandan, A.K., Nguyen, T.M., Kumar, R., Tran, L.S., Guttikonda, S.K., Quach, T.N., Aldrich, D.L., Nes, W.D., Nguyen, H.T.: Molecular characterization and functional analysis of Glycine max sterol methyl transferase 2 genes involved in plant membrane sterol biosynthesis. - Plant mol. Biol. 74: 503-518, 2010. Go to original source...
  26. Nes, W.D. Sterol methyltransferase: enzymology and inhibition. - Biochim. biophys. Acta 1529: 63-88, 2000. Go to original source...
  27. Nes, W.D., Jayasimha, P., Zhou, W., Kanagasabai, R., Jin, C., Jaradat, T.T., Shaw, R.W., Bujnicki, J.M.: Sterol methyltransferase: functional analysis of highly conserved residues by site-directed mutagenesis. - Biochemistry 43: 569-576, 2004. Go to original source...
  28. Nes, W.D., Marshall, J.A., Jia, Z., Jaradat, T.T., Song, Z., Jayasimha, P.: Active site mapping and substrate channeling in the sterol methyltransferase pathway. - J. biol. Chem. 277: 42549-42556, 2002. Go to original source...
  29. Ohta, D., Mizutani, M.: Sterol C22-desaturase and its biological roles. - In: Bach, T.J., Rohme,r M. (ed.): Isoprenoid Synthesis in Plants and Microorganisms: New Concepts and Experimental Approaches. Pp. 381-391. Springer, New York 2013. Go to original source...
  30. Paniagua-Pérez, R., Madrigal-Bujaidar, E., Reyes-Cadena, S., Alvarez-González, I., Sánchez-Chapul, L., Pérez-Gallaga, J., Hernández, N., Flores-Mondragón, G., Velasco, O.: Cell protection induced by betasitosterol: inhibition of genotoxic damage, stimulation of lymphocyte production, and determination of its antioxidant capacity. - Arch. Toxicol. 82: 615-622, 2008. Go to original source...
  31. Paolacci, A.R., Tanzarella, O.A., Porceddu, E., Ciaffi, M.: Identification and validation of reference genes for quantitative RT-PCR normalization in wheat. - BMC mol. Biol. 10:11, 2009. Go to original source...
  32. Papadakis, E., Nicklin, S., Baker, A., White, S.: Promoters and control elements: designing expression cassettes for gene therapy. - Curr. Gene Therapy 4: 89-113, 2004.
  33. Pfaffl, M.W.: A new mathematical model for relative quantification in real-time RT-PCR. - Nucl. Acids Res. 29: 2002-2007, 2001.
  34. Posé, D., Castanedo, I., Borsani, O., Nieto, B., Rosado, A., Taconnat, L., Ferrer, A., Dolan, L., Valpuesta, V., Botella, M.A.: Identification of the Arabidopsis dry2 / sqe1-5 mutant reveals a central role for sterols in drought tolerance and regulation of reactive oxygen species. - Plant J. 59: 63-76, 2009. Go to original source...
  35. Roche, Y., Gerbeau-Pissot, P., Buhot, B., Thomas, D., Bonneau, L., Gresti, J., Mongrand, S., Perrier-Cornet, J.M., Simon-Plas, F.: Depletion of phytosterols from the plant plasma membrane provides evidence for disruption of lipid rafts. - FASEB J. 22: 3980-3991, 2008. Go to original source...
  36. Ruelland, E., Vaultier, M.N., Zachowski, A., Hurry, V., Kader, J.C., Delseny, M.: Cold signalling and cold acclimation in plants. - Adv. Bot. Res. 49: 35-150, 2009. Go to original source...
  37. Schaeffer, A., Bronner, R., Benveniste, P., Schaller, H.: The ratio of campesterol to sitosterol that modulates growth in Arabidopsis is controlled by STEROL METHYL TRANSFERASE 2 :1. - Plant J. 25: 1-12, 2001.
  38. Schaller, H., Bouvier-Navé, P., Benveniste, P.: Overexpression of an Arabidopsis cDNA encoding a sterol-C24(1)-methyltransferase in tobacco modifies the ratio of 24-methyl cholesterol to sitosterol and is associated with growth reduction. - Plant Physiol. 118: 461-469, 1998. Go to original source...
  39. Souter, M.A., Pullen, M.L., Topping, J.F., Zhang, X., Lindsey, K.: Rescue of defective auxin-mediated gene expression and root meristem function by inhibition of ethylene signalling in sterol biosynthesis mutants of Arabidopsis. - Planta 219: 773-783, 2004. Go to original source...
  40. Subramaniam, K., Liu, B., Ye, Z., Abbo, S., Ueng, P.P.: Isolation of a gene coding for a putative sterol C-24 methyltransferase in wheat. - Wheat Information Service 89: 17-22, 1999.
  41. Sulkarnayeva, A.G., Valitova, J.N., Mukhitova, F.K., Minibayeva, F.V.: Stress-induced changes in membrane sterols in wheat roots. - Dokl. Biochem. Biophys. 455: 53-55, 2014. Go to original source...
  42. Tang, J., Ohyama, K., Kawaura, K., Hashinokuchi, H., Kamiya, Y., Suzuki, M., Muranaka, T., Ogihara, Y.: A new insight into application for barley chromosome addition lines of common wheat: achievement of stigmasterol accumulation. - Plant Physiol. 157: 1555-1567, 2011. Go to original source...
  43. Uemura, M., Steponkus, P.L.: A contrast of the plasma membrane lipid composition of oat and rye leaves in relation to freezing tolerance. - Plant Physiol. 104: 479-496, 1994. Go to original source...
  44. Valitova, J.N., Minibayeva, F.V., Kotlova, E.R., Novikov, A.V., Shavarda, A.L., Murtazina, L.I., Ryzhkina, I.S.: Effects of sterol-binding agent nystatin on wheat roots: the changes in membrane permeability, sterols and glycoceramides. - Phytochemistry 72: 1751-1759, 2011. Go to original source...
  45. Valitova, J., Sulkarnayeva, A., Kotlova, E., Ponomareva, A., Mukhitova, F.K., Murtazina, L., Ryzhkina, I., Beckett, R., Minibayeva, F.: Sterol binding by methyl-β-cyclodextrin and nystatin - comparative analysis of biochemical and physiological consequences for plants. - FEBS J. 281: 2051-2060, 2014. Go to original source...
  46. Vivancos, M., Moreno, J.J.: Beta-sitosterol modulates antioxidant enzyme response in RAW 264.7 macrophages. - Free Radicals Biol. Med. 39: 91-97, 2005.
  47. Wang, H., Nagegowda, D.A., Rawat, R., Bouvier-Navé, P., Guo, D., Bach, T.J., Chye, M.L.: Overexpression of Brassica juncea wild-type and mutant HMG-CoA synthase 1 in Arabidopsis up-regulates genes in sterol biosynthesis and enhances sterol production and stress tolerance. - Plant Biotechnol. J. 158: 1789-1802, 2012.
  48. Wendel, J.F.: Genome evolution in polyploids. - Plant mol. Biol. 42: 225-249, 2000. Go to original source...
  49. Willemsen, V., Friml, J., Grebe, M., Van den Toorn, A., Palme, K., Scheres, B.: Cell polarity and PIN protein positioning in Arabidopsis require STEROL METHYLTRANSFERASE1 function. - Plant Cell 15: 612-625, 2003. Go to original source...
  50. Zhang, X., Teixeira da Silva, J.A., Niu, M., Li, M., He, C., Zhao, J., Ma, G.: Physiological and transcriptomic analyses reveal a response mechanism to cold stress in Santalum album L. leaves. - Sci. Rep. 7:42165, 2017. Go to original source...