Biologia Plantarum 63: 228-236, 2019 | DOI: 10.32615/bp.2019.026

Effects hydrogen sulfide on the antioxidant system and membrane stability in mitochondria of Malus hupehensis under NaCl stress

G.-Q. Wei1,2, W.-W. Zhang1, H. Cao1, S.-S. Yue1, P. Li1, H.-Q. Yang1,*
1 College of Horticulture Science and Engineering, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, Shandong 271018, P.R. China
2 Shandong Institute of Pomology, Shandong Academy of Agricultural Sciences, Taian, Shandong 271000, P.R. China

Salt stress is one of the most critical environmental factors limiting plant growth, and hydrogen sulfide (H2S) can play a role in plant responses to this stress. To investigate the effects of H2S on mitochondrial functions under salt stress, we treated Malus hupehensis Rehd. var. pingyiensis germinating seeds with an 85 mM NaCl solution with or without an H2S donor sodium hydrosulfide (NaHS) and H2S scavenger hypotaurine (HT). Then, hydrogen peroxide (H2O2) content and antioxidant enzyme activities were measured in mitochondria of seedling roots. Our results show that the application of 0.05 mM NaHS rescued an NaCl-induced inhibition of root elongation, decreased H2O2 content, and enhanced superoxide dismutase (SOD), guaiacol peroxidase (POD), and catalase (CAT) activities in the mitochondria compared to NaCl treatment alone. It was also found that 0.05 mM NaHS significantly decreased the mitochondrial permeability transition pore and increased mitochondrial membrane fluidity, mitochondrial membrane potential, and cytochrome c/a ratio under NaCl stress. However, 0.02 mM NaHS did not affect root growth, antioxidant enzyme activities, and mitochondrial function under NaCl stress, whereas high concentrations of NaHS (more than 0.2 mM) had a weaker or negative effects. Moreover, 15 µM HT eliminated the beneficial effects of NaHS under NaCl stress. Our results suggest that H2S protected plants against salt stress by decreasing H2O2 accumulation and by regulating membrane stability and antioxidant system in mitochondria.

Keywords: apple, catalase, guiacol peroxidase, membrane potential, root elongation, superoxide dismutase

Accepted: November 15, 2018; Prepublished online: November 15, 2018; Published online: January 19, 2019Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Wei, G.-Q., Zhang, W.-W., Cao, H., Yue, S.-S., Li, P., & Yang, H.-Q. (2019). Effects hydrogen sulfide on the antioxidant system and membrane stability in mitochondria of Malus hupehensis under NaCl stress. Biologia plantarum63, 228-236. doi: 10.32615/bp.2019.026.
Download citation

Supplementary files

Download fileWEI5600Suppl.pdf

File size: 177.12 kB

References

  1. Amirsadeghi, S., Robson, C.A., McDonald, A.E., Vanlerberghe, G.C.: Changes in plant mitochondrial electron transport alter cellular levels of reactive oxygen species and susceptibility to cell death signaling molecules. - Plant Cell Physiol. 47: 1509-1519, 2006. Go to original source...
  2. Balk, J., Leaver, C.J., McCabe, P.F.: Translocation of cytochrome c from the mitochondria to the cytosol occurs during heat-induced programmed cell death in cucumber plants. - FEBS Lett. 463: 151-154, 1999. Go to original source...
  3. Banaei-Asl, F., Bandehagh, A., Uliaei, E.D., Farajzadeh, D., Sakata, K., Mustafa, G., Komatsu, S.: Proteomic analysis of canola root inoculated with bacteria under salt stress. - J. Proteomics 124: 88-111, 2015. Go to original source...
  4. Bharwana, S.A., Ali, S., Farooq, M.A., Ali, B., Iqbal, N., Abbas, F., Ahmad, M.S.A.: Hydrogen sulfide ameliorates lead-induced morphological, photosynthetic, oxidative damages and biochemical changes in cotton. - Environ. Sci. Pollut. Res. Int. 21: 717-731, 2014. Go to original source...
  5. Bradford, M.M.: A rapid and sensitive method for quantification of microgram quantities of protein utilizing the principle of protein-dye-binding. - Anal. Biochem. 72: 248-254, 1976. Go to original source...
  6. Chen, J., Wang, W.H., Wu, F.H., You, C.Y., Liu, T.W., Dong, X.J.: Hydrogen sulfide alleviates aluminum toxicity in barley seedlings. - Plant Soil 362: 301-318, 2013. Go to original source...
  7. Chen, Q., Vazquez, E.J., Moghaddas, S.: Production of reactive oxygen species by mitochondria: central role of complex III. - J. biol. Chem. 278: 36027-36031, 2003. Go to original source...
  8. Chen, X., Wang, Y., Li, J.Y., Jiang, A.L., Cheng, Y.W., Zhang, W.: Mitochondrial proteome during salt stress-induced programmed cell death in rice. - Plant Physiol. Biochem. 47: 407-415. 2009. Go to original source...
  9. Chen, Z., Chen, M., Jiang, M.: Hydrogen sulfide alleviates mercury toxicity by sequestering it in roots or regulating reactive oxygen species productions in rice seedlings. - Plant Physiol. Biochem. 111: 179-192, 2017. Go to original source...
  10. Cheng, W., Zhang, L., Jiao, C.J., Su, M., Yang, T., Zhou, L.N., Peng, R.Y., Wang, R.R., Wang, C.Y.: Hydrogen sulfide alleviates hypoxia-induced root tip death in Pisum sativum. - Plant Physiol. Biochem. 70: 278-286, 2013. Go to original source...
  11. Chongchatuporn, U., Ketsa, S., Van Doorn, W.G.: Chilling injury in mango (Mangifera indica) fruit peel: relationship with ascorbic acid concentrations and antioxidant enzyme activities. - Postharvest Biol. Technol. 86: 409-417, 2013. Go to original source...
  12. Dawood, M., Cao, F., Jahangir, M.M., Zhang, G., Wu, F.: Alleviation of aluminum toxicity by hydrogen sulfide is related to elevated ATPase, and suppressed aluminum uptake and oxidative stress in barley. - J. Hazard. Mater. 209-210: 121-128, 2012. Go to original source...
  13. Deng, Y.Q., Bao, J., Yuan, F., Liang, X., Feng, Z.T., Wang, B.S.: Exogenous hydrogen sulfide alleviates salt stress in wheat seedlings by decreasing Na+ content. - Plant Growth Regul. - 79: 391-399, 2016. Go to original source...
  14. Dhindsa, R.S., Plumb-Dhindsa, P., Thorpe, T.A.: Leaf senescence correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. - J. exp. Bot. 32: 93-101, 1982. Go to original source...
  15. Du, X.Z., Jin, Z.P., Liu, D.M., Yang, G.D., Pei, Y.X.: Hydrogen sulfide alleviates the cold stress through MPK4 in Arabidopsis thaliana. - Plant Physiol. Biochem. 120: 112-119, 2017. Go to original source...
  16. Ferreira-Silva, S.L., Voigt, E.L., Silva, E.N., Maia, J. M., Aragão, T.C.R., Silveira, J.A.G.: Partial oxidative protection by enzymatic and non-enzymatic components in cashew leaves under high salinity. - Biol. Plant. 56: 172-176, 2012. Go to original source...
  17. Gioniannopolitis, C.N., Ries, S.K.: Purification and quantitative relationship with water-soluble protein in seedling. - Plant Physiol. 59: 315-318, 1977. Go to original source...
  18. Hu, Z.G., Zhou, L., Ding, S.Z.: Effects of aerobic training to exhaustive exercise rat mitochondrial permeability transition pore. - J. Shenyang Sport Univ. 34: 64-67, 2015.
  19. Huang, W.J., Yang, X.D., Yao, S.C., Thet, L.O., He, H.Y., Wang, A.Q., Li, C.Z., He, L.F.: Reactive oxygen species burst induced by aluminum stress triggers mitochondria-dependent programmed cell death in peanut root tip cells. - Plant Physiol. Biochem. 82: 76-84, 2014. Go to original source...
  20. Ichas, F., Mazat, J.P.: From calcium signaling to cell death: two conformation for the mitochondrial permeability transition pore. Switching from low- to high-conductance state. - Biochim. Biophys. Acta 1366: 33-50, 1998. Go to original source...
  21. Jacoby, R.P., Li, L., Huang, S., Lee, C.P., Millar, A.H., Taylor, N.L.: Mitochondrial composition, function and stress response in plants. - J. integr. Plant Biol. 54: 887-906, 2012. Go to original source...
  22. Jin, Z.P., Shen, J.J., Qiao, Z.J., Yang, G.D., Wang, R., Pei, Y. X.: Hydrogen sulfide improves drought resistance in Arabidopsis thaliana. - Biochem. biophys. Res. Co. 414: 481-486, 2011. Go to original source...
  23. Kabil, O., Banerjee, R.: Redox biochemistry of hydrogen sulfide. - J. biol. Chem. 285: 21903-21907, 2010. Go to original source...
  24. Kochba, J., Lavee, S., Spiegel-Roy, P.: Differences in peroxidase activity and isoenzymes in embryogenic and non-embryogenic 'Shamouti' orange ovular callus lines. - Plant Cell Physiol. 18: 463-467, 1977. Go to original source...
  25. Krishnan, N., Fu, C.X., Pappin, D.J., Tonks, N.K.: H2S-induced sulfhydration of the phosphatase PTP1B and its role in the endoplasmic reticulum stress response. - Sci. Signal. 4: ra86, 2011.
  26. Lai, D.W., Mao, Y., Zhou, H., Li, F., Wu, M.Z., Zhang, J., He, Z.Y., Cui, W.T., Xie, Y.J.: Endogenous hydrogen sulfide enhances salt tolerance by coupling the reestablishment of redox homeostasis and preventing salt-induced K+ loss in seedlings of Medicago sativa. - Plant Sci. 225: 117-129, 2014. Go to original source...
  27. Li, Z.G., Ding, X.J., Du, P.F.: Hydrogen sulfide donor sodium hydrosulfide improved heat tolerance in maize and involvement of proline. - Plant Physiol. 170: 741-747, 2013. Go to original source...
  28. Li, Z.G., Gong, M., Xie, H., Yang, L., Li, J.: Hydrogen sulfide donor sodium hydrosulfide-induced heat tolerance in tobacco (Nicotiana tabacum L) suspension cultured cells and involvement of Ca2+ and calmodulin. - Plant Sci. 185/186: 185-189, 2012. Go to original source...
  29. Liu, X., Chen, J., Wang, G.H., Wang, W.H., Shen, Z.J., Luo, M.R., Gao, G.F., Simon, M., Ghoto, K., Zheng, H.L.: Hydrogen sulfide alleviates zinc toxicity by reducing zinc uptake and regulating genes expression of antioxidative enzymes and metallothioneins in roots of the cadmium/zinc hyperaccumulator Solanum nigrum L. - Plant Soil 400: 177-192, 2016. Go to original source...
  30. Liu, Z.Q., Pei, Y.X., Fang, H.H., Tian, B.H.: [H2S regulates foxtail millet responding to stress by protein S-sulfhydration.] - Chin. J. Biochem. Mol. Biol. 31: 1085-1091, 2015. [In Chin., ab: E]
  31. Ma, H.Y., Lv, D.G., Liu, G.C.: Mitochondrial response in the apical and lateral flower buds of the Hanfu apple to cold stress during the dormancy stage. - Acta ecol. Sin. 33: 52-58, 2013. Go to original source...
  32. Ma, H.Y., Lv, D,G., Yang H.Q.: Characteristics of mitochondria and cell death in roots of Malus hupehensis var. pingyiensis under NaCl stress. - Chin. J. Plant Ecol. 34: 1448-1453, 2010.
  33. Muhammad, F., Nirmali, G., Mubshar, H., Sharmistha, B., Sreyashi, P., Nandita, B., Hussein, M.M., Salem, S.A., Kadambot, H.M.S.: Effects, tolerance mechanisms and management of salt stress in grain legumes. - Plant Physiol. Biochem. 118: 199-217, 2017.
  34. Pan, X.B., Xiang, L.X., Hu, X.H., Ren, W.Q., Zhang, L., Ni, X.X.: Effects of exogenous spermidine on mitochondrial function of tomato seedling roots under salinity-alkalinity stress. - Chin. J. Plant Ecol. 27: 491-498, 2016. [In Chin., ab: E]
  35. Panda, S.K., Yamamoto, Y., Kondo, H., Matsumoto, H.: Mitochondrial alterations related to programmed cell death in tobacco cells under aluminium stress. - Compt. rend. Biol. 331: 597-610, 2008. Go to original source...
  36. Qiao, Z.J., Jing, T., Liu, Z.Q., Zhang, L.P., Jin, Z.P., Liu, D.M., Pei, Y.X.: H2S acting as a downstream signaling molecule of SA regulates Cd tolerance in Arabidopsis. - Plant Soil 393: 137-146, 2015. Go to original source...
  37. Qian, P., Sun, R., Ali, B., Gill, R.A., Xu, L., Zhou, W.J.: Effects of hydrogen sulfide on growth, antioxidative capacity, and ultrastructural changes in oilseed rape seedlings under aluminum toxicity. - J. Plant Growth Regul. 33: 526-538, 2014. Go to original source...
  38. Shan, C., Liu, H., Zhao, L., Wang, X.: Effects of exogenous hydrogen sulfide on the redox states of ascorbate and glutathione in maize leaves under salt stress. - Biol. Plant. 58: 169-173, 2014. Go to original source...
  39. Sheng, L.X., Feng, L.G., Shu, H.R.: Effets of nitrogen on the activity of antioxidant enzymes and functions of mitochondriain cherry rootstock roots under hypoxia stress. - Acta horticult. sin. 36: 1575-1580, 2009 [In Chin., ab: E].
  40. Szabo, I., Zoratti, M.: Mitochondrial channels: ion fluxes and more. - Physiol. Rev. 94: 519-608, 2014. Go to original source...
  41. Tian, B.H., Qiao, Z.J., Zhang, L.P., Hua, L., Pei, Y.X.. Hydrogen sulfide and proline cooperate to alleviate cadmium stress in foxtail millet seedlings. - Plant Physiol. Biochem. 109: 293-299, 2016. Go to original source...
  42. Tonshin, A.A., Saprunova, V.B., Solodovnikova, I.M.. Functional activity and ultrastructure of mitochondrial isolated from myocardial apoptotic tissue. - Biochemistry 68: 875-881, 2003. Go to original source...
  43. Wang, B.L., Shi, L., Li, Y.X., Zhang, W.H.: Boron toxicity is alleviated by hydrogen sulphide in cucumber (Cucumis sativus L.) seedlings. - Planta 231: 1301-1309, 2010. Go to original source...
  44. Wang, J., Zhu, H., Liu, X., Liu, Z.: Oxidative stress and Ca2+ signals involved on cadmium-induced apoptosis in rat hepatocyte. - Biol. Trace Element Res. 161: 180-189, 2014. Go to original source...
  45. Wang, Y.Q., Li, L., Cui, W.T., Xu, S., Shen, W.B., Wang, R.: Hydrogen sulfide enhances alfalfa (Medicago sativa) tolerance against salinity during seed germination by nitric oxide pathway. - Plant Soil 351: 107-119, 2012. Go to original source...
  46. Xia, F.S., Wang, X.G., Li, M.L., Mao, P.S.: Mitochondrial structural and antioxidant system responses to aging in oat (Avena sativa L.) seeds with different moisture contents. - Plant Physiol. Biochem. 94: 122-129, 2015. Go to original source...
  47. Yang, G.D., Zhao, K.X., Ju, Y.J., Mani, S., Cao, Q.H., Puukila, S., Khaper, N., Wu, L.Y., Wang, R.: Hydrogen sulfide protects against cellular senescence via S-sulfhydration of Keap1 and activation of Nrf2. - Antioxid Redox Signal. 18: 1906-1919, 2013.
  48. Yao, N., Eisfelder, B.J., Marvin, J., Greenberg, J.T.: The mitochondrion - an organelle commonly involved in programmed cell death in Arabidopsis thaliana. -Plant J. 40: 596-610, 2004. Go to original source...
  49. Zhan, J., Li, W., He, H.Y., Li, C.Z., He, L.F.: Mitochondrial alterations during Al-induced PCD in peanut root tips. - Plant Physiol. Biochem. 75: 105-113, 2014. Go to original source...
  50. Zhang, F., Wang, Y., Lou, Z., Dong, J.: Effect of heavy metal stress on antioxidative enzymes and lipid peroxidation in leaves and roots of two mangrove plant seedlings (Kandelia candel and Bruguiera gymnorrhiza). - Chemosphere 67: 44-50, 2007. Go to original source...
  51. Zhang, H., Hu, L.Y., Hu, K.D., He, Y.D., Wang, S.H., Luo, J.P.: Hydrogen sulfide promotes wheat seed germination and alleviates oxidative damage against copper stress. - J. integr. Plant Biol. 50: 1518-1529, 2010b. Go to original source...
  52. Zhang, H., Jiao, H., Jiang, C.X., Wang, S.H., Wei, Z.J., Luo, J.P., Jones, R.L.: Hydrogen sulfide protects soybean seedlings against drought-induced oxidative stress. - Acta Physiol. Plant. 32: 849-857, 2010a. Go to original source...
  53. Zhang, H., Ye, Y.K., Wang, S.H., Luo, J.P., Tang, J., Ma, D.F.: Hydrogen sulfide counteracts chlorophyll loss in sweet potato seedling leaves and alleviates oxidative damage against osmotic stress. - Plant Growth Regul. 58: 243-250, 2009. Go to original source...
  54. Zhou, L., Wang N.N., Gong, S.Y., Lu, R., Li, Y., Li, X.B.: Overexpression of a cotton (Gossypium hirsutum) WRKY gene, GhWRKY34, in Arabidopsis enhances salt tolerance of the transgenic plants. - Plant Physiol. Biochem. 96: 311-320, 2015. Go to original source...
  55. Zorov, D.B., Juhaszova, M., Sollott, S.J.: Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. - Physiol. Rev. 94: 909-950, 2014. Go to original source...