Biologia plantarum 61:378-384, 2017 | DOI: 10.1007/s10535-016-0660-0

Microwaves affect Myriophyllum aquaticum plants differently depending on the wave polarization

M. D. H. J. Senavirathna1,*, T. Asaeda2
1 Ocean University of Sri Lanka, Crow-Island, Colombo 15, Sri Lanka
2 Department of Environmental Science and Technology, Saitama University, Sakura-ku, Saitama, Japan

Previous studies on microwave exposure on plants have revealed variations in sensitivity of plants to different microwave frequencies, exposure durations, and power intensities. However, the effects of different polarizations of microwaves on plants have not been studied. Therefore, we investigated the effect of horizontally and vertically polarized 2 GHz continuous microwaves on Myriophyllum aquaticum plants at 1.8 W m-2 power density. The electric potential variation along the vascular tissues were investigated for 1.5 h and growth parameters, pigmentation, and H2O2 formation were studied during 48 h microwave exposure. Exposure to horizontally polarized microwaves, decreased standard deviation of electric potential variation and increased H2O2 content significantly. Vertically polarized microwaves increased the standard deviation of electric potential variation and photosynthetic pigments significantly. However, none of the polarizations altered growth parameters (shoot length, stem diameter, and internodal length). Thermographic images taken for 1 h continuous microwave exposure did not indicate alteration in the temperature of the plants for both vertical and horizontal polarities.

Keywords: carotenoids; chlorophylls; dielectric activity; electric potential; emergent plant; growth parameters; non-thermal effect
Subjects: microwaves; wave polarization; electric potential; growth parameters; chlorophyll content; carotenoids
Species: Myriophyllum aquaticum

Received: October 29, 2015; Revised: April 2, 2016; Accepted: April 28, 2016; Published: June 1, 2017Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Senavirathna, M.D.H.J., & Asaeda, T. (2017). Microwaves affect Myriophyllum aquaticum plants differently depending on the wave polarization. Biologia plantarum61(2), 378-384. doi: 10.1007/s10535-016-0660-0.
Download citation

Supplementary files

Download filebpl-201702-0020_S1.pdf

File size: 2.12 MB

References

  1. Apel, K., Hirt, H.: Reactive oxygen species: metabolism, oxidative stress, and signal transduction. - Annu. Rev. Plant. Biol. 55: 373-399, 2004. Go to original source...
  2. Ashraf, M., Foolad, M.R.: Roles of glycine betaine and proline in improving plant abiotic stress resistance. - Environ. exp. Bot. 59: 206-216, 2007. Go to original source...
  3. Ben-Gal, A., Shani, U.: Yield, transpiration and growth of tomatoes under combined excess boron and salinity stress. - Plant Soil 247: 211-221, 2002. Go to original source...
  4. Cheeseman, J.M.: Hydrogen peroxide and plant stress: a challenging relationship. - Plant Stress 1: 4-15, 2007.
  5. Cho, M.R., Thatte, H.S., Silvia, M.T., Golan, D.E.: Transmembrane calcium influx induced by ac electric fields. - Faseb. J. 13: 677-683, 1999. Go to original source...
  6. Dhawi, F., Al-Khayri, J.M.: Magnetic fields induce changes in photosynthetic pigments content in date palm (Phoenix dactylifera L.) seedlings. - TOASJ 3: 1-5, 2009. Go to original source...
  7. Felle, H., Zimmermann, M.: Systemic signalling in barley through action potentials. - Planta 226: 203-214, 2007. Go to original source...
  8. Fromm, J., Lautner, S.: Electrical signals and their physiological significance in plants. - Plant Cell Environ. 30: 249-257, 2007. Go to original source...
  9. Gechev, T.S., Hille, J.: Hydrogen peroxide as a signal controlling plant programmed cell death. - J. cell. Biol. 168: 17-20, 2005. Go to original source...
  10. Gomes, P.I.A., Asaeda, T.: Spatial and temporal heterogeneity of Eragrostis curvula in the downstream flood meadow of a regulated river. - Ann. Limnol., Int. J. Limnol. 45: 181-193, 2009. Go to original source...
  11. Jacob, J., Chia, L.H.L., Boey, F.Y.C.: Thermal and non-thermal interaction of microwave radiation with materials. - J. Mater. Sci. 30: 5321-5327, 1995. Go to original source...
  12. Janská, A., Maršík, P., Zelenková, S., Ovesná, J.: Cold stress and acclimation - what is important for metabolic adjustment?. - Plant Biol. 12: 395-405, 2010. Go to original source...
  13. Kato, R.: Effects of a magnetic-field on the growth of primary roots of Zea mays. - Plant Cell Physiol. 29: 1215-1219, 1998.
  14. Liboff, A.R., Cherng, S., Jenrow, K.A., Bull, A.: Calmodulindependent cyclic nucleotide phosphodiesterase activity is altered by 20 μT magnetostatic fields. - Bioelectromagnetics 24: 32-38, 2003. Go to original source...
  15. Lindströum, E., Lindströum, P., Berglund, A., Mild, K. H., Lundgren, E.: Intracellular calcium oscillations induced in a T-cell line by a weak 50 Hz magnetic field. - J. Cell Physiol. 156: 395-398, 1993. Go to original source...
  16. Moreno, J.E., Shyu, C., Campos, M.L., Patel, L.C., Chung, H.S., Yao, J., He, S.Y., Howe, G.A.: Negative feedback control of jasmonate signaling by an alternative splice variant of JAZ10. - Plant Physiol. 162: 1006-1017, 2013. Go to original source...
  17. Petrov, V.D., Van Breusegem, F.: Hydrogen peroxide - a central hub for information flow in plant cells. - AoB Plants 2012: pls014, 2012.
  18. Răcuciu, M.: Influence of extremely low frequency magnetic field on assimilatory pigments and nucleic acids in Zea mays and Curcubita pepo seedlings. - Rom. Biotech. Lett. 17: 7662-7672, 2012.
  19. Răcuciu, M., Miclăuş, S.: Low-level 900 MHz electromagnetic field influence on vegetal tissue. - Rom. J. Biophys. 17: 149-156, 2007.
  20. Ray, J.D., Sinclair, T.R.: The effect of pot size on growth and transpiration of maize and soybean during water deficit stress. - J. exp. Bot., 49: 1381-1386, 1998. Go to original source...
  21. Reyes-Diaz, M., Alberdi, M., Mora, M.D.: Short-term aluminum stress differentially affects the photochemical efficiency of photosystem II in highbush blueberry genotypes. - J. amer. Soc. hort. Sci. 134: 14-21, 2009. Go to original source...
  22. Roux, D., Vian, A., Girard, S., Bonnet, P., Paladian, F., Davies, E., Ledoigt, G.: Electromagnetic fields (900 MHz) evoke consistent molecular responses in tomato plants. - Physiol. Plant. 128: 283-288, 2006. Go to original source...
  23. Satterfield, C.N., Bonnell, A.H.: Interferences in the titanium sulfate method for hydrogen peroxide. - Anal. Chem. 27: 1174-1175, 1955. Go to original source...
  24. Senavirathna, M.D.H.J., Asaeda, T.: The significance of microwaves in the environment and its effect on plants. - Environ. Rev. 22: 220-228, 2013.
  25. Senavirathna, M.D.H.J., Asaeda, T.: Radio-frequency electromagnetic radiation alters the electric potential of Myriophyllum aquaticum. - Biol. Plant. 58: 355-362, 2014. Go to original source...
  26. Senavirathna, M.D.H.J., Takashi, A., Kimura, Y.: Shortduration exposure to radiofrequency electromagnetic radiation alters the chlorophyll fluorescence of duckweeds (Lemna minor). - Electromagn. Biol. Med. 33: 327-334, 2013.
  27. Sharma, V.P., Singh, H.P., Kohli, R.K., Batish, D.R.: Mobile phone radiation inhibits Vigna radiata (mung bean) root growth by inducing oxidative stress. - Sci. total Environ. 407: 5543-5547, 2009. Go to original source...
  28. Tkalec, M., Malaric, K.I., Pevalek-Kozlina, B.: Influence of 400, 900, and 1900 MHz electromagnetic fields on Lemna minor growth and peroxidase activity. - Bioelectromagnetics 26: 185-193, 2005. Go to original source...
  29. Tkalec, M., Malaric, K., Pevalek-Kozlina, B.: Exposure to radiofrequency radiation induces oxidative stress in duckweed Lemna minor L. - Sci. total Environ. 388: 78-89, 2007. Go to original source...
  30. Ursache, M., Mindru, G., Creangă, D.E., Tufescu, F.M., Goiceanu, C.: The effects of high frequency electromagnetic waves on the vegetal organisms. - Rom. J. Phys. 54: 133-145, 2007.
  31. Wasternack, C., Hause, B.: Jasmonates and octadecanoids: signals in plant stress responses and development. - Progr. Nucl. Acid Res. mol. Biol. 72: 165-221, 2002.
  32. Wellburn, A.R.: The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. - J. Plant. Physiol. 144: 307-313, 1994. Go to original source...
  33. Yang, T.: Hydrogen peroxide homeostasis: activation of plant catalase by calcium/calmodulin. - Proc. nat. Acad. Sci. USA 99: 4097-4102, 2002. Go to original source...