Biologia plantarum 2014, 58:218-230 | DOI: 10.1007/s10535-013-0383-4

Cullin, a component of the SCF complex, interacts with TaRMD5 during wheat spike development

M. J. Hong1,2, D. Y. Kim1, Y. W. Seo1,*
1 Division of Biotechnology, Korea University, Seoul, Republic of Korea
2 Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeonbuk, Republic of Korea

Cullin, a major component of the SKP1-cullin-F box protein (SCF) complex, is a scaffold protein that binds to both SKP1 and RBX1 for selective protein degradation through the ubiquitin proteasome system. In order to study the role of cullin in common wheat, we isolated TaCullin (Cullin gene from Triticum aestivum) from wheat spike cDNA. TaCullin was expressed during all spike/grain developmental stages and in high amounts during early spike/grain development. The TaCullin gene is located on the chromosome arm 2DL. Our results suggest that unneddylated TaCullin is located in the nucleus. Based on previous proposals of Cullin-SKP1 interactions, we examined the interaction between TaCullin and SKP1-like protein (TaSKP) families by using a yeast two-hybrid approach. Yeast cotransformation demonstrated that the N-terminus of TaCullin physically interacts with TaSKP proteins. Using the yeast two-hybrid screen, we identified potential TaCullin-interacting proteins in a wheat spike library. Among the 9 clones that were identified as potential interacting partners of TaCullin, we identified E3-like ubiquitin ligase, targeting fructose-1,6-bisphosphatase (RMD5) homolog A-like protein. The interaction between TaCullin and the TaRMD5 homolog A-like protein was specifically mediated through the C-terminus of TaCullin. The results of bimolecular fluorescence complementation assay indicated that TaCullin-TaRMD5 is localized in the plasma membrane and cytoplasm. In this study, we present that TaRMD5, such as RING box protein 1 (RBX1), has the potential to interact with TaCullin, depending on the developmental stage and particular organ tissues analyzed.

Keywords: chromosome location; TaSKP; Triicum aestivum; yeast two-hybrid screening
Subjects: Cullin; SCF complex; yeast two-hybrid screening; abscisic acid; auxin; gibberellic acid; methyl jasmonate; temperature - low; NaCl; polyethylene glycol; developmental stages; wheat
Species: Triticum aestivum

Received: January 10, 2013; Revised: July 11, 2013; Accepted: July 15, 2013; Published: June 1, 2014Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Hong, M.J., Kim, D.Y., & Seo, Y.W. (2014). Cullin, a component of the SCF complex, interacts with TaRMD5 during wheat spike development. Biologia plantarum58(2), 218-230. doi: 10.1007/s10535-013-0383-4.
Download citation

Supplementary files

Download filebpl-201402-0003_S1.gif

File size: 9.32 MB

References

  1. Bernhardt, A., Lechner, E., Hano, P., Schade, V., Dieterle, M., Anders, M., Dubin, M.J., Benvenuto, G., Bowler, C., Genschik, P.: CUL4 associates with DDB1 and DET1 and its downregulation affects diverse aspects of development in Arabidopsis thaliana. - Plant J. 47: 591-603, 2006. Go to original source...
  2. Cardozo, T., Pagano, M.: The SCF ubiquitin ligase: insights into a molecular machine. - Nat. Rev. mol. cell. Biol. 5: 739-751, 2004. Go to original source...
  3. Chen, H., Nelson, R., Sherwood, J.: Enhanced recovery of transformants of Agrobacterium tumefaciens after freeze-thaw transformation and drug selection. - Biotechniques 16: 664-670, 1994.
  4. Chew, E.H., Hagen, T.: Substrate-mediated regulation of cullin neddylation. - J.biol. Chem. 282: 17032-17040, 2007. Go to original source...
  5. Chua, Y.S., Boh, B.K., Ponyeam, W., Hagen, T.: Regulation of cullin RING E3 ubiquitin ligases by CAND1 in vivo. - PloS ONE. 6: e16071, 2011. Go to original source...
  6. Ciechanover, A., Everett, R.D., Orr, A., Preston, C.M., Arnold, I., Pfeiffer, K., Neupert, W., Stuart, R.A., Schägger, H., Wouters, F.S.: The ubiquitin-proteasome pathway: on protein death and cell life FREE. - EMBO J. 17: 7151-7160, 1998. Go to original source...
  7. Deshaies, R.: SCF and cullin/ring H2-based ubiquitin ligases. - Annu. Rev. cell. dev. Biol. Plant 15: 435-467, 1999. Go to original source...
  8. Deshaies, R.J., Joazeiro, C.A.P.: RING domain E3 ubiquitin ligases. - Annu. Rev. Biochem. 78: 399-434, 2009. Go to original source...
  9. Dieterle, M., Thomann, A., Renou, J.P., Parmentier, Y., Cognat, V., Lemonnier, G., Müller, R., Shen, W.H., Kretsch, T., Genschik, P.: Molecular and functional characterization of Arabidopsis cullin 3A. - Plant J. 41: 386-399, 2005. Go to original source...
  10. Duda, D.M., Borg, L.A., Scott, D.C., Hunt, H.W., Hammel, M., Schulman, B.A.: Structural insights into NEDD8 activation of cullin-RING ligases: conformational control of conjugation. - Cell 134: 995-1006, 2008. Go to original source...
  11. Duda, D.M., Olszewski, J.L., Tron, A.E., Hammel, M., Lambert, L.J., Waddell, M.B., Mittag, T., DeCaprio, J.A., Schulman, B.A.: Structure of a glomulin-RBX1-CUL1 complex: Inhibition of a RING E3 ligase through masking of its E2-binding surface. - Mol. Cells 47: 371-382, 2012. Go to original source...
  12. Durfee, T., Roe, J.L., Sessions, R.A., Inouye, C., Serikawa, K., Feldmann, K.A., Weigel, D., Zambryski, P.C.: The F-box-containing protein UFO and AGAMOUS participate in antagonistic pathways governing early petal development in Arabidopsis. - Proc. nat. Acad. Sci. USA 100: 8571-8576, 2003. Go to original source...
  13. Figueroa, P., Gusmaroli, G., Serino, G., Habashi, J., Ma, L., Shen, Y., Feng, S., Bostick, M., Callis, J., Hellmann, H.: Arabidopsis has two redundant Cullin3 proteins that are essential for embryo development and that interact with RBX1 and BTB proteins to form multisubunit E3 ubiquitin ligase complexes in vivo. - Plant Cell 17: 1180-1195, 2005. Go to original source...
  14. Gardner, J.S., Hess, W., Trione, E.: Development of the young wheat spike: a SEM study of Chinese spring wheat. - Amer. J. Bot. 72: 548-559, 1985. Go to original source...
  15. Geyer, R., Wee, S., Anderson, S., Yates, J., Wolf, D.A.: BTB/POZ domain proteins are putative substrate adaptors for cullin 3 ubiquitin ligases. - Mol. Cells 12: 783-790, 2003. Go to original source...
  16. Gingerich, D.J., Gagne, J.M., Salter, D.W., Hellmann, H., Estelle, M., Ma, L., Vierstra, R.D.: Cullins 3a and 3b assemble with members of the broad complex/tramtrack/bric-a-brac (BTB) protein family to form essential ubiquitin-protein ligases (E3s) in Arabidopsis. - J. biol. Chem. 280: 18810-18821, 2005. Go to original source...
  17. Gray, W.M., Del Pozo, J.C., Walker, L., Hobbie, L., Risseeuw, E., Banks, T., Crosby, W.L., Yang, M., Ma, H., Estelle, M.: Identification of an SCF ubiquitin-ligase complex required for auxin response in Arabidopsis thaliana. - Genes Dev. 13: 1678-1691, 1999. Go to original source...
  18. Gray, W.M., Kepinski, S., Rouse, D., Leyser, O., Estelle, M.: Auxin regulates SCFTIR1-dependent degradation of AUX/IAA proteins. - Nature 414: 271-276, 2001. Go to original source...
  19. Groisman, R., Polanowska, J., Kuraoka, I., Sawada, J., Saijo, M., Drapkin, R., Kisselev, A.F., Tanaka, K., Nakatani, Y.: The ubiquitin ligase activity in the DDB2 and CSA complexes is differentially regulated by the COP9 signalosome in response to DNA damage. - Cell 113: 357-367, 2003. Go to original source...
  20. Guo, H., Ecker, J.R.: Plant responses to ethylene gas are mediated by SCFEBF1/EBF2-dependent proteolysis of EIN3 transcription factor. - Cell 115: 667-677, 2003. Go to original source...
  21. Harmon, F., Imaizumi, T., Gray, W.M.: CUL1 regulates TOC1 protein stability in the Arabidopsis circadian clock. - Plant J. 55: 568-579, 2008. Go to original source...
  22. Hellmann, H., Hobbie, L., Chapman, A., Dharmasiri, S., Dharmasiri, N., Del Pozo, C., Reinhardt, D., Estelle, M.: Arabidopsis AXR6 encodes CUL1 implicating SCF E3 ligases in auxin regulation of embryogenesis. - EMBO J. 22: 3314-3325, 2003. Go to original source...
  23. Helmstaedt, K., Schwier EU., Christmann, M., Nahlik, K., Westermann, M., Harting, R., Grond, S., Busch, S., Braus G.H.: Recruitment of the inhibitor Cand1 to the cullin substrate adaptor site mediates interaction to the neddylation site. - Mol. Biol. Cell 22: 153-164, 2011. Go to original source...
  24. Hershko, A., Ciechanover, A.: The ubiquitin system. - Annu. Rev. Biochem. 67: 425-479, 1998. Go to original source...
  25. Higa, L.A., Zhang, H.: Stealing the spotlight: CUL4-DDB1 ubiquitin ligase docks WD40-repeat proteins to destroy. - Cell Division 2: 5, 2007. Go to original source...
  26. Hong, M.J., Kim, D.Y., Kang, S.Y., Kim, D.S., Kim, J.B., Seo, Y.W.: Wheat F-box protein recruits proteins and regulates their abundance during wheat spike development. - Mol. Biol. Rep. 39: 9681-9696, 2012. Go to original source...
  27. Hong, M.J., Kim, D.Y., Lee, T.G., Jeon, W.B., Seo, Y.W.: Functional characterization of pectin methylesterase inhibitor (PMEI) in wheat. - Genes Genet. Syst. 85: 97-106, 2010. Go to original source...
  28. Hua, Z., Vierstra, R.D.: The cullin-RING ubiquitin-protein ligases. - Annu. Rev. Plant Biol. 62: 299-334, 2011. Go to original source...
  29. Jin, J., Cardozo, T., Lovering, R.C., Elledge, S.J., Pagano, M., Harper, J.W.: Systematic analysis and nomenclature of mammalian F-box proteins. - Genes Dev. 18: 2573-2580, 2004. Go to original source...
  30. Johansen, L.K., Carrington, J.C.: Silencing on the spot. Induction and suppression of RNA silencing in the Agrobacterium-mediated transient expression system. - Plant Physiol. 126: 930-938, 2001. Go to original source...
  31. Lijun, J., Yi, S.: RBX1/ROC1-SCF E3 ubiquitin ligase is required for mouse embryogenesis and cancer cell survival. - Cell Division 4: 16, 2009.
  32. Liu, J., Nussinov, R.: The mechanism of ubiquitination in the cullin-RING E3 ligase machinery: conformational control of substrate orientation. - PLoS Comput. Biol. 5: e1000527, 2009. Go to original source...
  33. Marín, I.: Diversification of the cullin family. - BMC Evol. Biol. 9: 267, 2009. Go to original source...
  34. Moon, J., Parry, G., Estelle, M.: The ubiquitin-proteasome pathway and plant development. - Plant Cell 16: 3181-3195, 2004. Go to original source...
  35. Moon, J., Zhao, Y., Dai, X., Zhang, W., Gray, W.M., Huq, E., Estelle, M.: A new CULLIN 1 mutant has altered responses to hormones and light in Arabidopsis. - Plant Physiol. 143: 684-696, 2007.
  36. Ni, W., Xie, D., Hobbie, L., Feng, B., Zhao, D., Akkara, J., Ma, H.: Regulation of flower development in Arabidopsis by SCF complexes. - Plant Physiol. 134: 1574-1585, 2004. Go to original source...
  37. Petroski, M.D., Deshaies, R.J.: Function and regulation of cullin-RING ubiquitin ligases. - Nat. Rev. mol. cell Biol. 6: 9-20, 2005. Go to original source...
  38. Pickart, C.M.: Mechanisms underlying ubiquitination. - Annu. Rev. Biochem. 70: 503-533, 2001. Go to original source...
  39. Potuschak, T., Lechner, E., Parmentier, Y., Yanagisawa, S., Grava, S., Koncz, C., Genschik, P.: EIN3-dependent regulation of plant ethylene hormone signaling by two Arabidopsis F box proteins: EBF1 and EBF2. - Cell 115: 679-689, 2003. Go to original source...
  40. Santt, O., Pfirrmann, T., Braun, B., Juretschke, J., Kimmig, P., Scheel, H., Hofmann, K., Thumm, M., Wolf, D.H.: The yeast GID complex, a novel ubiquitin ligase (E3) involved in the regulation of carbohydrate metabolism. - Mol Biol. Cell 19: 3323-3333, 2008. Go to original source...
  41. Sarikas, A., Hartmann, T., Pan, Z.Q.: The cullin protein family. - Genome Biol. 12: 220, 2011. Go to original source...
  42. Scheffner, M., Nuber, U., Huibregtse, J.M.: Protein ubiquitination involving an E1-E2-E3 enzyme ubiquitin thioester cascade. - Nature 373: 81-83, 1995. Go to original source...
  43. Schwechheimer, C., Villalobos, L.I.A.C.: Cullin-containing E3 ubiquitin ligases in plant development. - Curr. Opin. Plant Biol. 7: 677-686, 2004. Go to original source...
  44. Seol, J.H., Feldman, R., Zachariae, W., Shevchenko, A., Correll, C.C., Lyapina, S., Chi, Y., Galova, M., Claypool, J., Sandmeyer, S.: Cdc53/cullin and the essential Hrt1 RINGH2 subunit of SCF define a ubiquitin ligase module that activates the E2 enzyme Cdc34. - Genes Dev. 13: 1614-1626, 1999. Go to original source...
  45. Shen, W.H., Parmentier, Y., Hellmann, H., Lechner, E., Dong, A., Masson, J., Granier, F., Lepiniec, L., Estelle, M., Genschik, P.: Null mutation of AtCUL1 causes arrest in early embryogenesis in Arabidopsis. - Mol. Biol. Cell 13: 1916-1928, 2002.
  46. Siergiejuk, E., Scott, D.C., Schulman, B.A., Hofmann, K., Kurz, T., Peter, M.: Cullin neddylation and substrate-adaptors counteract SCF inhibition by the CAND1-like protein Lag2 in Saccharomyces cerevisiae. - EMBO J. 28: 3845-3856, 2009. Go to original source...
  47. Smalle, J., Vierstra, R.D.: The ubiquitin 26S proteasome proteolytic pathway. - Annu. Rev. Plant Biol. 55: 555-590, 2004. Go to original source...
  48. Stone, S.L., Hauksdóttir, H., Troy, A., Herschleb, J., Kraft, E., Callis, J.: Functional analysis of the RING-type ubiquitin ligase family of Arabidopsis. - Plant Physiol. 137: 13-30, 2005. Go to original source...
  49. Sun, Y.: E3 ubiquitin ligases as cancer targets and biomarkers. - Neoplasia 8: 645-654, 2006. Go to original source...
  50. Thomann, A., Dieterle, M., Genschik, P.: Plant CULLIN-based E3s: Phytohormones come first. - FEBS Lett. 579: 3239-3245, 2005. Go to original source...
  51. Tomaštíková, E., Cenklová, V., Kohoutová, L., Petrovská, B., Váchová, L., Halada, P., Kočárová, G., Binarová, P.: Interactions of an Arabidopsis RanBPM homologue with LisH-CTLH domain proteins revealed high conservation of CTLH complexes in eukaryotes. - BMC Plant Biol. 12: 83, 2012. Go to original source...
  52. Walter, M., Chaban, C., Schütze, K., Batistic, O., Weckermann, K., Näke, C., Blazevic, D., Grefen, C., Schumacher, K., Oecking, C.: Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. - Plant J. 40: 428-438, 2004. Go to original source...
  53. Wang, K.L.C., Yoshida, H., Lurin, C., Ecker, J.R.: Regulation of ethylene gas biosynthesis by the Arabidopsis ETO1 protein. - Nature 428: 945-950, 2004. Go to original source...
  54. Wang, X., Feng, S., Nakayama, N., Crosby, W., Irish, V., Deng, X.W., Wei, N.: The COP9 signalosome interacts with SCFUFO and participates in Arabidopsis flower development. - Plant Cell 15: 1071-1082, 2003. Go to original source...
  55. Weber, H., Bernhardt, A., Dieterle, M., Hano, P., Mutlu, A., Estelle, M., Genschik, P., Hellmann, H.: Arabidopsis AtCUL3a and AtCUL3b form complexes with members of the BTB/POZ-MATH protein family. - Plant Physiol. 137: 83-93, 2005. Go to original source...
  56. Wydro, M., Kozubek, E., Lehmann, P.: Optimization of transient Agrobacterium-mediated gene expression system in leaves of Nicotiana benthamiana. - Acta biochim polon. 53: 289-298, 2006.
  57. Zhao, D., Ni, W., Feng, B., Han, T., Petrasek, M.G., Ma, H.: Members of the Arabidopsis-SKP1-like gene family exhibit a variety of expression patterns and may play diverse roles in Arabidopsis. - Plant Physiol. 133: 203-217, 2003. Go to original source...
  58. Zhao, D., Yu, Q., Chen, M., Ma, H.: The ASK1 gene regulates B function gene expression in cooperation with UFO and LEAFY in Arabidopsis. - Development 128: 2735-2746, 2001.
  59. Zheng, N., Schulman, B.A., Song, L., Miller, J.J., Jeffrey, P.D., Wang, P., Chu, C., Koepp, D.M., Elledge, S.J., Pagano, M.: Structure of the Cul 1-Rbx 1-Skp 1-F boxSkp 2 SCF ubiquitin ligase complex. - Nature 416: 703-709, 2002. Go to original source...