Biologia plantarum 2015, 59:701-707 | DOI: 10.1007/s10535-015-0550-x

Differential gene expression in two contrasting wheat cultivars under cadmium stress

N. Kumari1, P. Parmar1, V. Sharma1,*
1 Department of Bioscience and Biotechnology, Banasthali University, Rajasthan, India

The present study investigated differences in cadmium resistance of two wheat (Triticum aestivum L.) cultivars. The cvs. RAJ 4161 (Cd resistant) and PBW 343 (Cd sensitive) were treated with 200 mg(Cd) kg-1(soil) for 3, 5, 7, and 10 d. The effect of the Cd stress was estimated by measuring growth parameters, accumulation of cadmium, sulphur, and glutathione (GSH), and by expression of some defence genes [phytochelatin synthase (PCS), glutathione reductase (GR), and ascorbate peroxidase (APX)]. The Cd treatment resulted in a significant reduction in plant growth and in an increase in the accumulation of S and GSH. Further, the expressions of PCS, GR, and APX were also mostly enhanced. The PCS was upregulated significantly in roots of RAJ 4161 (0.6-fold) and downregulated (0.9-fold) in PBW 343 on day 3 of the Cd treatment. In RAJ 4161, the expressions of APX and GR recorded a maximum increase of 2.1- and 2.4-fold in roots and leaves, respectively, after 10 d of the stress. The results show that a different ability of RAJ 4161 and PBW 343 to modulate mRNA expression after the Cd treatment was related to their Cd tolerance.

Keywords: defence genes; glutathione content; real-time RT-PCR; sulphur; Triticum aestivum
Subjects: gene expression; cadmium; glutathione; sulfur; growth; wheat
Species: Triticum aestivum

Received: October 20, 2014; Revised: May 5, 2015; Accepted: June 15, 2015; Published: December 1, 2015Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Kumari, N., Parmar, P., & Sharma, V. (2015). Differential gene expression in two contrasting wheat cultivars under cadmium stress. Biologia plantarum59(4), 701-707. doi: 10.1007/s10535-015-0550-x.
Download citation

Supplementary files

Download filebpl-201504-0013_S1.pdf

File size: 57.78 kB

References

  1. Anderson, M.E.: Determination of glutathione and glutathione disulfide in biological samples. - Methods Enzymol. 113: 548-555, 1985. Go to original source...
  2. Bashir, H., Ahmad, J., Bagheri, R., Nauman, M., Qureshi, M.I.: Limited sulfur resource forces Arabidopsis thaliana to shift towards non-sulfur tolerance under cadmium stress. - Environ. exp. Bot. 94: 19-32, 2013. Go to original source...
  3. Bhargava, B.S., Raghupathi, H.B.: Analysis of plant material for macro and micro nutrients. - In Tandon, H.L.S. (ed.): Methods of Analysis of Soils, Plant, Waters and Fertilizers. Pp. 49-82. FDCO, New Delhi 1993.
  4. Castiglione, S., Franchin, C., Fossati, T., Lingua, G., Torrigiani, P., Biondi, S.: High zinc concentrations reduce rooting capacity and alter metallothioneins gene expression in white poplar (Populus alba L. cv. Villafranca). - Chemosphere 67: 1117-1126, 2007. Go to original source...
  5. Chen, F., Dong, J., Wang, F., Wu, F., Zhang, G., Li, G., Zheng, C., Jingxing, C., Wei, K.: Identification of barley genotypes with low grain Cd accumulation and its interaction with four microelements. - Chemosphere 67: 2082-2088, 2007. Go to original source...
  6. Clemens, S., Persoh, D.: Multi-tasking phytochelatin synthases. - Plant Sci. 177: 266-271, 2009. Go to original source...
  7. Cobbett, C., Goldsbrough, P.: Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. - Annu. Rev. Plant Biol. 53: 159-182, 2002. Go to original source...
  8. Cobbett, C.S.: Phytochelatins and their roles in heavy metal detoxification. - Plant Physiol. 123: 825-832, 2000. Go to original source...
  9. Ferreira, R.R., Fornazier, R.F., Vitória, A.P., Lea, P.J., Azevedo, R.A.: Changes in antioxidant enzyme activities in soybean under cadmium stress. - J. Plant Nutr. 25: 327-342, 2002. Go to original source...
  10. Gasic, K., Korban, S.S.: Transgenic Indian mustard (Brassica juncea) plants expressing an Arabidopsis phytochelatin synthase (AtPCS1) exhibit enhanced As and Cd tolerance. - Plant mol. Biol. 64: 361-369, 2007. Go to original source...
  11. Gaudet, M., Pietrini, F., Beritognolo, I., Iori, V., Zacchini, M., Massacci, A., Mugnozza, G.S., Sabatti, M.: Intraspecific variation of physiological and molecular response to cadmium stress in Populus nigra L. - Tree Physiol. 31: 1309-1318, 2011. Go to original source...
  12. Gill, S.S., Khan, N.A., Tuteja, N.: Cadmium at high dose perturbs growth, photosynthesis and nitrogen metabolism while at low dose it up regulates sulfur assimilation and antioxidant machinery in garden cress (Lepidium sativum L.). - Plant Sci. 182: 112-120, 2012. Go to original source...
  13. Gill, S.S., Khan, N.A., Tuteja, N.: Differential cadmium stress tolerance in five indian mustard (Brassica juncea L.) cultivars. An evaluation of the role of antioxidant machinery. - Plant Signal. Behav. 6: 293-300, 2011. Go to original source...
  14. Gill, S.S, Tuteja, N.: Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. - Plant Physiol. Biochem. 48: 909-930, 2010. Go to original source...
  15. Gratão, P.L., Monteiro, C.C., Carvalho, R.F., Tezotto, T., Piotto, F.A., Peres, L.E.P., Azevedo, R.A.: Biochemical dissection of diageotropica and never ripe tomato mutants to Cd-stressful conditions. - Plant Physiol. Biochem. 56: 79-96, 2012. Go to original source...
  16. He, Z., Li, J., Zhang, H., Ma. M.: Different effects of calcium and lanthanum on the expression of phytochelatin synthase gene and cadmium absorption in Lactuca sativa. - Plant Sci. 168: 309-318, 2005. Go to original source...
  17. Herbette, S., Taconnat, L., Hugouvieux, V., Piette, L., Magniette, M.L.M., Cuine, S., et al.: Genome-wide transcriptome profiling of the early cadmium response of Arabidopsis roots and shoots. - Biochimie 88: 1751-1765, 2006. Go to original source...
  18. Hirata, K., Tsuji, N., Miyamoto, K.: Biosynthetic regulation of phytochelatins, heavy metal-binding peptides. - J. Biosci. Bioeng. 100: 593-599, 2005. Go to original source...
  19. Hoagland, D.R., Arnon, D.I.: The water culture method for growing plants without soil. - Calif. agr. exp. Station Circular 347: 1-32, 1950.
  20. Issac, R.A., Kerber, J.D.: Atomic absorption and flame photometry: techniques and uses in soil, plant and water analysis. - In: Walsh, L.M. (ed.): Instrumental Methods for Analysis of Soils and Plant Tissue. Pp. 17-37. Soil Science Society of America, Madison 1971.
  21. Jozefczak, M., Remans, T., Vangronsveld, J., Cuypers, A.: Glutathione is a key player in metal-induced oxidative stress defences. - Int. J. mol. Sci. 13: 3145-3175, 2012. Go to original source...
  22. Kim, Y.Y., Kim, D.Y., Shim, D., Song, W.Y., Lee, J., Schroeder, J.I., Kim, S., Moran, N., Lee, Y.: Expression of the novel wheat gene TM20 confers enhanced cadmium tolerance to bakers' yeast. - J. biol. Chem. 283: 15893-15902, 2008. Go to original source...
  23. Li, A.M., Yu, B.Y., Chen, F.H., Gan, H.Y., Yuan, J.G., Qiu, R., Huang, J.C., Yang, Z.Y., Z.F. Xu.: Characterization of the Sesbania rostrata phytochelatin synthase gene: Alternative splicing and function of four isoforms. - Int. J. mol. Sci. 10: 3269-3282, 2009. Go to original source...
  24. Luo, H., Li, H., Zhang, X., Fu, J.: Antioxidant responses and gene expression in perennial ryegrass (Lolium perenne L.) under Cd stress. - Ecotoxicology 20: 770-778, 2011. Go to original source...
  25. McLaughlin, M.J., Singh, B.R.: Cadmium in soil and plants: a global perspective. - In: McLaughlin, M.J., Singh, B.R. (ed.): Cadmium in Soils and Plants. Vol. 85. Pp. 1-9. Kluwer Academic Publishers, Dordrecht 1999.
  26. Mendoza-Cózatl, D.G., Butko, E., Springer, F., Torpey, J.W., Komives, E.A., Kehr, J., Schroeder, J.I.: Identification of high levels of phytochelatins, glutathione and cadmium in the phloem sap of Brassica napus. A role for thiol-peptides in the long-distance transport of cadmium and the effect of cadmium on iron translocation. - Plant J. 54: 249-259, 2008. Go to original source...
  27. Mishra, S., Srivastava, S., Tripathi, R.D., Govindarajan, R., Kuriakose, S.V., Prasad, M.N.V.: Phytochelatin synthesis and response of antioxidants during cadmium stress in Bacopa monnieri L. - Plant Physiol. Biochem. 44: 25-37, 2006. Go to original source...
  28. Mohanpuria, P., Rana, N.K., Yadav, S.K.: Cadmium induced oxidative stress influence on glutathione metabolic genes of Camellia sinensis (L.) O. Kuntze. - Environ. Toxicol. 22: 368-374, 2007. Go to original source...
  29. Morel, F.M.M.: The co-evolution of phytoplankton and trace element cycles in the oceans. - Geobiology 6: 318-324, 2008. Go to original source...
  30. Nicot, N., Hausman, J.F., Hoffmann, L., Eves, D.: Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. - J. exp. Bot. 56: 2907-2914, 2005. Go to original source...
  31. Ogawa, I., Nakanishi, H., Mori, S., Nishizawa, N.K.: Time course analysis of gene regulation under cadmium stress in rice. - Plant Soil 325: 97-108, 2009. Go to original source...
  32. Pál, M., Horváth, E., Janda, T., Páldi, E., Szalai, G.: Physiological changes and defense mechanisms induced by cadmium stress in maize. - J. Plant Nutr. Soil Sci. 169: 239-246, 2006. Go to original source...
  33. Parmar, P., Kumari, N., Sharma, V.: Structural and functional alterations in photosynthetic apparatus of plants under cadmium stress. - Bot. Stud. 54: 45-50, 2013. Go to original source...
  34. Pereira, G.J.G., Molina, S.M.G., Lea, P. J., Azevedo, R.A.: Activity of antioxidant enzymes in response to cadmium in Crotalaria juncea. - Plant Soil 239: 123-132, 2002. Go to original source...
  35. Pomponi, M., Censi, V., Girolamo, V.D., Paolis, D.A., Di Toppi, L.S., Aromolo, R., Costantino, P., Cardarelli, M.: Overexpression of Arabidopsis phytochelatin synthase in tobacco plants enhances Cd2+ tolerance and accumulation but not translocation to the shoot. - Planta 223: 180-190, 2006. Go to original source...
  36. Porra, R.J., Thompson, W.A., Kriedemann, P.E.: Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of concentration of chlorophyll standards by atomic absorption spectroscopy. - Biochim. biophys. Acta 975: 384-394, 1989. Go to original source...
  37. Rivera-Becerril, F., Calantzis, C., Turnau, K., Caussanel, J.P., Belismov, A.A., Gianinazzi, S., Strasser, J.R., Gianinazzi-Pearson, V.: Cadmium accumulation and buffering of cadmium-induced stress by arbuscular mycorrhiza in three Pisum sativum L. genotypes. - J. exp. Bot. 53: 1177-1185, 2002. Go to original source...
  38. Seth, C.S., Remans, T., Keunen, E., Jozefczak, M., Gielen, H., Opdenakker, K., Weyens, N., Vangronsveld, J., Cupers, A.: Phytoextraction of toxic metals: a central role for glutathione. - Plant Cell Environ. 35: 334-346, 2012. Go to original source...
  39. Sharma, N.K.: Suitable varieties and agro-chemicals for yield optimization of wheat in arid Rajasthan. - J. Progr. Agr. 4: 124-127, 2013.
  40. Skórzyńska-Polit, E., Drążkiewicz, M., Krupa, Z.: Lipid peroxidation and antioxidative response in Arabidopsis thaliana exposed to cadmium and copper. - Acta Physiol. Plant. 32: 169-175, 2010. Go to original source...
  41. Szarka, A., Tomasskovics, B., Bánhegyi, G.: The ascorbateglutathione- α-tocopherol triad in abiotic stress response. - Int. J. mol. Sci. 13: 4458-4483, 2012. Go to original source...
  42. Tomaszewska, B., Tukendorf, A., Baralkiewicz, D.: The synthesis of phytochelatins in lupin roots treated with lead ions. - Sci. Legumes 3: 206-217, 1996.
  43. Valentovičová, K., Halušková, L., Huttová, J., Mistrík, I., Tamás, L.: Effect of cadmium on diaphorase activity and nitric oxide production in barley root tips. - J. Plant Physiol. 167: 10-14, 2010. Go to original source...
  44. Xue, X.C., Gao, H.Y., Zhang, L.T.: Effects of cadmium on growth, photosynthetic rate and chlorophyll content in leaves of soybean seedlings. - Biol. Plant. 57: 587-590, 2013. Go to original source...
  45. Yadav, S.K.: Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. - S. Afr. J. Bot. 76: 167-179, 2010. Go to original source...