Biologia plantarum 2011, 55:340-344 | DOI: 10.1007/s10535-011-0050-6

Effects of salt and osmotic stresses on free polyamine content and expression of polyamine biosynthetic genes in Vitis vinifera

J. H. Liu1,*, I. Nakajima2, T. Moriguchi2
1 National Key Laboratory of Crop Genetic Improvement, Key Laboratory of Horticultural Plant Biology of Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, P.R. China
2 National Institute of Fruit Tree Science, Tsukuba, Ibaraki, Japan

Grape (Vitis vinifera L.) seedlings grown in vitro were treated with either 200 mM NaCl or 350 mM mannitol for 7 d. Both salinity and osmotic stress caused significant increase in electrolyte leakage. From the three commonly occurring free polyamines (PA), only conspicuous accumulation of putrescine was found in the NaCl-treated seedlings. Four PA biosynthetic genes encoding arginine decarboxylase (pVvADC), S-adenosylmethionine decarboxylase (pVvSAMDC), spermidine synthase (pVvSPDS) and spermine synthase (pVvSPMS) were successfully isolated. While induction of pVvADC was observed from the 1st day of salt treatment, pVvSAMDC and pVvSPMS were induced only at late stage of stress. As for expression levels of genes in the mannitol-treated seedling, either temporary (pVvADC at day 1) or late (pVvSPMS at days 5 and 7) induction was observed.

Keywords: abiotic stress; electrolyte leakage; grape; mannitol; NaCl; putrescine; spermine; spermidine

Received: August 7, 2009; Accepted: March 12, 2010; Published: June 1, 2011Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Liu, J.H., Nakajima, I., & Moriguchi, T. (2011). Effects of salt and osmotic stresses on free polyamine content and expression of polyamine biosynthetic genes in Vitis vinifera. Biologia plantarum55(2), 340-344. doi: 10.1007/s10535-011-0050-6.
Download citation

References

  1. Aghaleh, M., Niknam, V., Ebrahimzadeh, H., Razavi, K.: Salt stress effects on growth, pigments, proteins and lipid peroxidation in Salicornia persica and S. europaea. - Biol. Plant. 53: 243-248, 2009. Go to original source...
  2. Aziz, A.: Spermidine and related-metabolic inhibitors modulate sugar and amino acid levels in Vitis vinifera L.: possible relationships with initial fruitlet abscission. - J. exp. Bot. 54: 355-363, 2003. Go to original source...
  3. Aziz, A., Brun, O., Audran, J.C.: Involvement of polyamines in the control of fruitlet physiological abscission in grapevine (Vitis vinifera). - Physiol. Plant. 113: 50-58, 2001. Go to original source...
  4. Bertoldi, D., Tassoni, A., Martinelli, L., Bagni, N.: Polyamine and somatic embryogenesis in two Vitis vinefera cultivars. - Physiol. Plant. 120: 657-666. 2004. Go to original source...
  5. Botella, M.Á., Del Amor, F., Amorós, A., Serrano, M., Martínez, V., Cerdá, A.: Polyamine, ethylene and other physico-chemical parameters in tomato (Lycopersicon esculentum) fruits as affected by salinity. - Physiol. Plant. 109: 428-434, 2000. Go to original source...
  6. Farooq, M., Wahid, A., Lee, D.J.: Exogenously applied polyamines increase drought tolerance of rice by improving leaf water status, photosynthesis and membrane properties. - Acta Physiol. Plant. 31: 937-945, 2009. Go to original source...
  7. Flowers, T. J.: Improving crop salt tolerance. - J. exp. Bot. 396: 307-319, 2004. Go to original source...
  8. Kitashiba, H., Hao, Y.J., Honda, C., Moriguchi, T.: Two types of spermine synthase gene: MdACL5 and MdSPMS are differentially involved in apple fruit development and cell growth. - Gene 361: 101-111, 2005. Go to original source...
  9. Kusano, T., Berberich, T., Tateda, C., Takahashi, Y.: Polyamines: essential factors for growth and survival. - Planta 228: 367-381, 2008. Go to original source...
  10. Liu, J.H., Ban, Y., Wen, X.P., Nakajima, I., Moriguchi, T.: Molecular cloning and expression analysis of an arginine decarboxylase gene from peach (Prunus persica). - Gene 429: 10-17, 2009. Go to original source...
  11. Liu, J.H., Kitashiba, H., Wang, J., Ban, Y., Moriguchi, T.: Polyamines and their ability to provide environmental stress tolerance to plants. - Plant Biotechnol. 24: 117-126, 2007. Go to original source...
  12. Liu, J.H., Moriguchi, T.: Changes in free polyamine titers and expression of polyamine biosynthetic genes during growth of peach in vitro callus. - Plant Cell Rep. 26: 125-131, 2007. Go to original source...
  13. Liu, J.H., Moriguchi, T.: Salt stress-mediated changes in free polyamine titers and expression of genes responsible for polyamine biosynthesis of apple in vitro shoots. - Environ. exp. Bot. 62: 28-35, 2008. Go to original source...
  14. Liu, J.H., Nada, K., Honda, C., Kitashiba, H., Wen, X.P., Pang, X.M., Moriguchi, T.: Polyamine biosynthesis of apple callus under salt stress: importance of arginine decarboxylase pathway in stress response. - J. exp. Bot. 57: 2589-2599, 2006b. Go to original source...
  15. Liu, J.H., Nada, K., Pang, X.M., Honda, C., Kitashiba, H., Moriguchi, T.: Role of polyamines in peach fruit development and storage. - Tree Physiol. 26: 791-798. 2006a. Go to original source...
  16. Lutts, S., Almansouri, M., Kinet, J.M.: Salinity and water stress have contrasting effects on the relationship between growth and cell viability during and after stress exposure in durum wheat callus. - Plant Sci. 167: 9-18, 2004. Go to original source...
  17. Murashige, T., Skoog, F.: A revised medium for rapid growth and bioassays with tobacco tissue cultures. - Physiol. Plant. 15: 473-497, 1962. Go to original source...
  18. Primikirios, N.I., Roubelakis-Angelakis, K.A.: Cloning and expression of an arginine decarboxylase cDNA from Vitis vinifera L. cell-suspension cultures. - Planta 208: 574-582, 1999. Go to original source...
  19. Santa-Cruz, A., Acosta, M., Pérez-Alfocea, F., Bolarin, M.C.: Changes in free polyamine levels induced by salt stress in leaves of cultivated and wild tomato species. - Physiol. Plant. 101: 341-346, 1997. Go to original source...
  20. Shinozaki, K., Yamaguchi-Shinozaki, K.: Gene networks involved in drought stress response and tolerance. - J. exp. Bot. 58: 221-227, 2007.
  21. Tassoni, A., Franceschetti, M., Tasco, G., Casadio, R., Bagni, N.: Cloning, functional identification and structural modelling of Vitis vinifera S-adenosylmethionine decarboxylase. - J. Plant Physiol. 164: 1208-1219, 2007. Go to original source...
  22. Tonon, G., Kevers, C., Faivre-Rampant, O., Grazianil, M., Gaspar, T.: Effect of NaCl and mannitol iso-osmotic stresses on proline and free polyamine levels in embryogenic Fraxinus angustifolia callus. - J. Plant Physiol. 161: 701-708, 2004. Go to original source...
  23. Urano, K., Yoshiba, Y., Nanjo, T., Igarashi, Y., Seki, M., Sekiguchi, F., Yamaguchi-Shinozaki, K., Shinozaki, K.: Characterization of Arabidopsis genes involved in biosynthesis of polyamines in abiotic stress response and developmental stages. - Plant Cell Environ. 26: 1917-1926, 2003.
  24. Urano, K., Yoshiba, Y., Nanjo, T., Ito, Y., Seki, M., Yamaguchi-Shinozaki, K., Shinozaki, K.: Arabidopsis stress-inducible gene for arginine decarboxylase AtADC2 is required for accumulation of putrescine in salt tolerance. - Biochem. Biophys. Res. 313: 369-375, 2004. Go to original source...
  25. Verma, S., Mishra, S.N.: Putrescine alleviation of growth in salt stressed Brassica juncea by inducing antioxidative defense system. - J. Plant Physiol. 162, 669-677, 2005. Go to original source...
  26. Wan, C.Y., Wilkins, T.A.: A modified hot borate method significantly enhances the yield of high-quality RNA from cotton (Gossypium hirsutum L.). - Anal. Biochem. 223: 7-12, 1994. Go to original source...
  27. Wi, S.J., Kim, W.T., Park, K.Y.: Overexpression of carnation S-adenosylmethionine decarboxylase gene generates a broad-spectrum tolerance to abiotic stresses in transgenic tobacco plants. - Plant Cell Rep. 25: 1111-1121, 2006. Go to original source...
  28. Zhu, J.K.: Plant salt tolerance. - Trends Plant Sci. 6: 66-71, 2001. Go to original source...