Biologia plantarum 48:543-548, 2004 | DOI: 10.1023/B:BIOP.0000047150.82053.e9

Combined Effects of CO2 and O3 on Antioxidative and Photoprotective Defense Systems in Needles of Ponderosa Pine

M. Tausz1,2, D.M. Olszyk3, S. Monschein2, D.T. Tingey3
1 School of Forest and Ecosystem Science, University of Melbourne, Creswick, Australia
2 Institut für Pflanzenwissenschaften, Karl-Franzens-Universität Graz, Graz, Austria
3 National Health and Environmental Effects Research Laboratory, Western Ecology Division, US Environmental Protection Agency, Corvallis, USA

Ponderosa pine (Pinus ponderosa Dougl. ex Laws.) seedlings were exposed to near ambient or elevated CO2 (average concentrations during the last growing season 446 versus 699 μmol mol-1), combined with low or elevated O3 for three seasons. Ozone exposure during the last growing season (accumulated dose above threshold 0.06 μmol mol-1) was 0.05 versus 26.13 μmol mol-1 h. Needles of the youngest age class were harvested after the dormancy period. Ozone exposure decreased needle contents of chlorophyll a, chlorophyll b, and ascorbate, and resulted in a more oxidized total ascorbate and a more de-epoxidized xanthophyll cycle pool irrespective of the CO2 level. Trees under elevated CO2 had a more oxidized glutathione pool and lower chlorophyll a content. Contents of glutathione, tocopherol, and carotenoids were not affected by the CO2 or O3 treatments. There were no interactive effects between elevated CO2 and elevated O3 on any of the parameters measured. The results suggest that elevated atmospheric CO2 concentration does not compensate for ozone stress by increasing antioxidative capacity in ponderosa pine.

Keywords: air pollution; ascorbate; glutathione; oxidative stress; pigments; Pinus ponderosa; xanthophyll
Subjects: antioxidants, carotenoids; ascorbate, ascorbic acid; carotenoids, antioxidants; chlorophyll, antioxidants; CO2 and O3, combined effect on antioxidative and photoprotective defense system; cytokinins; glutathione; needle, chlorophyll, antioxidants; oxidative stress, defense system, CO2, ozone; ozone and CO2, combined effect on antioxidative and photoprotective defense system; Pinus ponderosa; ponderosa pine, antioxidants; tocopherol; xanthophyll cycle, antioxidants

Published: December 1, 2004Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Tausz, M., Olszyk, D.M., Monschein, S., & Tingey, D.T. (2004). Combined Effects of CO2 and O3 on Antioxidative and Photoprotective Defense Systems in Needles of Ponderosa Pine. Biologia plantarum48(4), 543-548. doi: 10.1023/B:BIOP.0000047150.82053.e9.
Download citation

References

  1. Alonso, R., Elvira, S., Castillo, F.J., Gimeno, B.S.: Interactive effects of ozone and drought stress on pigments and activities of antioxidative enzymes in Pinus halepensis.-Plant Cell Environ. 24: 905-916, 2001. Go to original source...
  2. Andersen, C.P., Wilson, R., Plocker, M., Hogsett, W.E.: Carry-over effects of ozone on root growth and carbohydrate concentrations of ponderosa pine seedlings.-Tree Physiol. 17: 805-811, 1997. Go to original source...
  3. Bernardi, R., Nali, C., Ginestri, P., Pugliesi, C., Lorenzini, G., Durante, M.: Antioxidant enzyme isoforms on gels in two poplar clones differing in sensitivity after ozone exposure.-Biol. Plant. 48: 41-48, 2004. Go to original source...
  4. Bichele, I., Moldau, H., Padu, E.: Estimation of plasmalemma conductivity to ascorbic acid in intact leaves exposed to ozone.-Physiol. Plant. 108: 405-412, 2000. Go to original source...
  5. Bortz, J., Lienert, G.A., Boenke, K.: Verteilungsfreie Methoden in der Biostatistik.-Springer Verlag, Berlin 1990. Go to original source...
  6. Burkey, K.O., Eason, G., Fiscus, E.L.: Factors that affect leaf extracellular ascorbic acid content and redox status.-Physiol. Plant. 117: 51-57, 2003. Go to original source...
  7. De Kok, L.J., Tausz, M.: The role of glutathione in plant reaction and adaptation to air pollutants.-In: Grill, D., Tausz, M., De Kok, L.J. (ed.): Significance of Glutathione in Plant Adaptation to the Environment. Pp. 185-208. Kluwer Academic Publishers, Dordrecht 2001. Go to original source...
  8. Elvira, S., Alonso, R., Castillo, F.J., Gimeno, B.S.: On the response of pigments and antioxidants of Pinus halepensis seedlings to Mediterranean climatic factors and long term ozone exposure.-New Phytol. 138: 419-432, 1998. Go to original source...
  9. Gaucher, C., Costanzoc, N., Afifb, D., Mauffettea, Y., Chevriera, N. Dizengremel, P.: The impact of elevated ozone and carbon dioxide on young Acer saccharum seedlings.-Physiol. Plant. 117: 392-402, 2003. Go to original source...
  10. Grulke, N.E.: Physiological responses of ponderosa pine to gradients of environmental stress.-In: Miller, P.R., McBride, J.R. (ed.): Oxidant Air Pollution Impacts in Montane Forests of Southern California. Pp. 126-163, Springer-Verlag, New York 1999. Go to original source...
  11. Heath, R.L.: Biochemical processes in an ecosystem: How should they be measured?-Water Air Soil Pollut. 116: 279-298, 1999. Go to original source...
  12. Karnosky, D.F.: Impacts of elevated atmospheric CO2 on forest trees and forest ecosystems: knowledge gaps.-Environ. Int. 29: 161-169, 2003.
  13. Langebartels, C., Heller, W., Fuhrer, G., Lippert, M., Simons, S., Sandermann, H.: Memory effects in the action of ozone on conifers.-Ecotoxicol. Environ. Safety 41: 62-72, 1998. Go to original source...
  14. Lee, E.H., Tingey, D.T., Hogsett, W.E.: Evaluation of ozone exposure indices in exposure-response modeling.-Environ. Pollut. 53: 43-62, 1988. Go to original source...
  15. Marabottini, R., Schraml, C., Paolacci, A.R., Sorgona, A., Raschi, A., Rennenberg, H., Badiani, M.: Foliar antioxidant status of adult Mediterranean oak species (Quercus ilex L. and Q. pubescens Willd.) exposed to permanent CO2-enrichment and to seasonal water stress.-Environ. Pollut. 113: 413-423, 2001. Go to original source...
  16. Matyssek, R., Sandermann, H.: Impact of ozone on trees: an ecophysiological perspective.-Progress Bot. 64: 349-404, 2003. Go to original source...
  17. McKee, I.F., Eiblmeier, M., Polle, A.: Enhanced ozone-tolerance in wheat grown at an elevated CO2 concentration: ozone exclusion and detoxification.-New Phytol. 137: 275-284, 1997. Go to original source...
  18. Miller, P.R.: Ozone effects in the San Bernardino National Forest.-In: Davis, D.D., Millin, A.A., Dochinger, L. (ed.): Air Pollution and the Productivity of the Forest. Pp. 161-197, Izaak Walton League and Penn State, Old Main 1983.
  19. Oksanen, E., Saleem, A.: Ozone exposure results in various carry-over effects and prolonged reduction in biomass in birch (Betula pendula Roth).-Plant Cell Environ. 22: 1401-1411, 1999. Go to original source...
  20. Olszyk, D.M., Johnson, M.G., Phillips, D.R., Seidler, R.J., Tingey, D.T., Watrud, L.S.: Interactive effects of CO2 and O3 on a ponderosa pine plant/litter/soil mesocosm.-Environ. Pollut. 115: 447-462, 2001. Go to original source...
  21. Olszyk, D.M., Tingey, D.T., Wise, C., Davis, E.: CO2 and O3 alter photosynthesis and water vapor exchange for Pinus ponderosa needles.-Phyton 42: 121-134, 2002.
  22. Ormrod, D.P., Lesser, V.M., Olszyk, D.M., Tingey, D.T.: Elevated temperature and carbon dioxide affect chlorophylls and carotenoids in douglas-fir seedlings.-Int. J. Plant Sci. 160: 529-534, 1999. Go to original source...
  23. Polle, A.: Photochemical oxidants: uptake and detoxification mechanisms.-In: De Kok, L.J., Stulen, I. (ed.): Responses of Plant Metabolism to Air Pollution and Global Change. Pp. 95-116, Backhuys Publishers, Leiden 1998.
  24. Polle, A., Pfirrmann, T., Chakrabarti, S., Rennenberg, H.: The effects of enhanced ozone and enhanced carbon-dioxide concentrations on biomass, pigments and antioxidative enzymes in spruce needles (Picea abies L.).-Plant Cell Environ. 16: 311-316, 1993. Go to original source...
  25. Polle, A., Rennenberg, H.: Photooxidative stress in trees.-In: Foyer, C., Mullineaux, W.M. (ed.): Causes of Photo-oxidative Stress and Amelioration of Defence Systems in Plants. Pp. 199-218, CRC Press, Boca Raton 1994.
  26. Sachs, L.: Angewandte Statistik.-Springer-Verlag, Berlin 1992. Go to original source...
  27. Schwanz, P., Häberle, K.-H., Polle, A.: Interactive effects of elevated CO2, ozone and drought stress on the activities of antioxidative enzymes in needles of Norway spruce trees (Picea abies, [L.] Karsten) grown with luxurious N-supply.-J. Plant Physiol. 148: 351-355, 1996. Go to original source...
  28. Schwanz, P., Polle, A.: Antioxidative systems, pigment and protein contents in leaves of adult mediterranean oak species (Quercus pubescens and Q. ilex) with lifetime exposure to elevated CO2.-New Phytol. 140: 411-423, 1998. Go to original source...
  29. Smirnoff, N.: Ascorbic acid: metabolism and functions of a multi-facetted molecule.-Curr. Opinion Plant Biol. 3: 229-235, 2000.
  30. Tausz, M.: The role of glutathione in plant reaction and adaptation to natural stresses.-In: Grill, D., Tausz, M., De Kok, L.J. (ed.): Significance of Glutathione in Plant Adaptation to the Environment. Pp. 101-122, Kluwer Academic Publishers, Dordrecht 2001. Go to original source...
  31. Tausz, M., Bytnerowicz, A., Arbaugh, M.J., Weidner, W., Grill, D.: Antioxidants and protective pigments of Pinus ponderosa needles at gradients of natural stresses and ozone in the San Bernardino Mountains in California.-Free Radical Res. 31: S113-120, 1999a. Go to original source...
  32. Tausz, M., Bytnerowicz, A., Arbaugh, M. J., Wonisch, A., Grill, D.: Biochemical response patterns in Pinus ponderosa trees at field plots in the San Bernardino Mountains (Southern California).-Tree Physiol. 21: 329-336, 2001. Go to original source...
  33. Tausz, M., Bytnerowicz, A., Weidner, W., Arbaugh, M.J., Padgett, P.E., Grill, D.: Changes in free radical scavengers describe the susceptibility of Pinus ponderosa to ozone in Southern Californian forests.-Water Air Soil Pollut. 116: 249-254, 1999b. Go to original source...
  34. Tausz, M., Bytnerowicz, A., Weidner, W., Arbaugh, M.J., Padgett, P.E., Grill, D.: Pigments and photoprotection in needles of Pinus ponderosa trees with and without symptoms of injury.-Phyton 39: 219-224, 1999c.
  35. Tausz, M., De Kok, L.J., Stulen, I., Grill, D.: Physiological responses of Norway spruce trees to elevated CO2 and SO2.-J. Plant Physiol. 148: 362-367, 1996. Go to original source...
  36. Tausz, M., Padgett, P.E., Monschein, S., Bytnerowicz, A.: The effects of nitric acid on antioxidants and protective pigments in Pinus ponderosa needles.-Phyton 42: 209-214, 2002.
  37. Tausz, M., Wonisch, A., Grill, D., Morales, D., Jiménez, M.S.: Measuring antioxidants in tree species in the natural environment. From sampling to data evaluation.-J. exp. Bot. 54: 1505-1510, 2003. Go to original source...
  38. Temple, P.J., Miller, P.R.: Foliar ozone injury and radial growth of ponderosa pine.-Can. J. Forest Res. 24: 1877-1882, 1994.
  39. Tognetti, R., Peñuelas, J.: Nitrogen and carbon concentrations, and stable isotope ratios in Mediterranean shrubs growing in the proximity of a CO2 spring.-Biol. Plant. 46: 411-418, 2003. Go to original source...
  40. Wieser, G., Havranek, W.M.: Effects of ozone on conifers in the timberline ecotone.-Trends Eur. Forest Tree Physiol. Res. 2: 115-125, 2001. Go to original source...
  41. Wieser, G., Tausz, M., Wonisch, A., Havranek, W.M.: Free radical scavengers and photosynthetic pigments in Pinus cembra L. needles as affected by ozone exposure.-Biol. Plant. 44: 225-232, 2001. Go to original source...