Biologia plantarum 56:187-191, 2012 | DOI: 10.1007/s10535-012-0040-3

Nitric oxide is involved in the regulation of ascorbate and glutathione metabolism in Agropyron cristatum leaves under water stress

C. Shan1,2, F. He3, G. Xu2, R. Han1,4, Z. Liang1,*
1 College of Life Science, Northwest A & F University, Yangling, P.R. China
2 Henan Institute of Science and Technology, Xinxiang, P.R. China
3 China Institute of Water Resources and Hydropower Research, Beijing, P.R. China
4 Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, P.R. China

This study investigated the regulation of ascorbate and glutathione metabolism by nitric oxide in Agropyron cristatum leaves under water stress. The activities of ascorbate peroxidase (APX), glutathione reductase (GR), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), L-galactono-1,4-lactone dehydrogenase (GalLDH) and γ-glutamylcysteine synthetase (γ-ECS), and the contents of NO, reduced ascorbic acid (AsA), reduced glutathione (GSH), total ascorbate and total glutathione increased under water stress. These increases were suppressed by pretreatments with NO synthesis inhibitors N G-nitro-L-arginine methyl ester (L-NAME) and 4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO). However, application of L-NAME and cPTIO to plants sufficiently supplied with water did not affect the activities of above mentioned enzymes and the contents of NO and above mentioned antioxidants. Pretreatments with L-NAME and cPTIO increased the malondialdehyde (MDA) content and electrolyte leakage of plants under water stress. Our results suggested that water stress-induced NO is a signal that leads to the upregulation of ascorbate and glutathione metabolism and has important role for acquisition of water stress tolerance.

Keywords: ascorbate peroxidase; cPTIO; electrolyte leakage; glutathione reductase; L-NAME; malondialdehyde
Subjects: ascorbate peroxidase; cPTIO; electrolyte leakage; glutathione reductase; L-NAME; malondialdehyde; nitric oxide; ascorbate; glutathione; water stress
Species: Agropyron cristatum

Received: December 31, 2010; Accepted: February 10, 2011; Published: March 1, 2012Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Shan, C., He, F., Xu, G., Han, R., & Liang, Z. (2012). Nitric oxide is involved in the regulation of ascorbate and glutathione metabolism in Agropyron cristatum leaves under water stress. Biologia plantarum56(1), 187-191. doi: 10.1007/s10535-012-0040-3.
Download citation

References

  1. Apel, K., Hirt, H.: Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. - Annu. Rev. Plant Biol. 55: 373-399, 2004. Go to original source...
  2. Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. - Anal. Biochem. 72: 248-254, 1976. Go to original source...
  3. Dalton, D.A., Russell, S.A., Hanus, F.J., Pascoe, G.A., Evans, H.J.: Enzymatic reactions of ascorbate and glutathione that prevent peroxide damage in soybean root nodules. - Proc. Nat. Acad. Sci. USA 83: 3811-3815, 1986. Go to original source...
  4. Dringen, R.: Glutathione metabolism and oxidative stress in neurodegeneration. - Eur. J. Biochem. 267: 4903, 2000. Go to original source...
  5. Grace, S.C., Logan, B.A.: Acclimation of foliar antioxidant systems to growth irradiance in three broad-leaved evergreen species. - Plant Physiol. 112: 1631-1640, 1996. Go to original source...
  6. Griffith, O.W.: Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. - Anal. Biochem. 106: 207-212, 1980. Go to original source...
  7. Guo, F.Q., Crawford, N.M.: Arabidopsis nitric oxide synthase 1 is targeted to mitochondria and protects against oxidative damage and dark-induced senescence. - Plant Cell 17: 3436-3450, 2005. Go to original source...
  8. Hodges, D.M., Andrews, C.J., Johnson, D.A., Hamilton, R.I.: Antioxidant compound responses to chilling stress in differentially sensitive inbred maize lines. - Plant Physiol. 98: 685-692, 1996. Go to original source...
  9. Hodges, M.D., DeLong, J.M., Forney, C.F., Prange, R.K.: Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. - Planta 207: 604-611, 1999. Go to original source...
  10. Hu, W.H., Xiao, Y.A., Zeng, J.J., Hu, X.H.: Photosynthesis, respiration and antioxidant enzymes in pepper leaves under drought and heat stresses. - Biol. Plant. 54: 761-765, 2010. Go to original source...
  11. Hu, X., Neill, S.J., Tang, Z., Cai, W.: Nitric oxide mediates gravitropic bending in soybean roots. - Plant Physiol. 137: 663-670, 2005. Go to original source...
  12. Jiang, M.Y., Zhang, J.H.: Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves. - J. exp. Bot. 53: 2401-2410, 2002. Go to original source...
  13. Lan, Y.P., Han, Z.H., Xu, X.F.: Accumulation of jasmonic acid in apple seedlings under water stress. - Acta hort. sin. 31: 16-20, 2004.
  14. Li, L., Van Staden, J., Jäger, A.K.: Effects of plant growth regulators on the antioxidant system in seedlings of two maize cultivars subjected to water stress. - Plant Growth Regul. 25: 81-87, 1998. Go to original source...
  15. Miyake, C., Asada, K.: Thylakoid-bound ascorbate peroxidase in spinach chloroplasts and photoreduction of its primary oxidation product monodehydroascorbate radicals in thylakoids. - Plant Cell Physiol. 33: 541-553, 1992.
  16. Mýtinová, Z., Motyka, V., Haisel, D., Gaudinová, A., Lubovská, Z., Wilhelmová, N.: Effect of abiotic stresses on the activity of antioxidative enzymes and contents of phytohormones in wild type and AtCKX2 transgenic tobacco plants. - Biol. Plant. 54: 461-470, 2010. Go to original source...
  17. Nakano, Y., Asada, K.: Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. - Plant Cell Physiol. 22: 867-880, 1981.
  18. Neill, S., Barros, R., Bright, J., Desikan, R., Hancock, J., Harrison, J.: Nitric oxide, stomatal closure, and abiotic stress. - J. exp. Bot. 59: 165-176, 2008. Go to original source...
  19. Noctor, G., Foyer, C.H.: Ascorbate and glutathione: keeping active oxygen under control. - Annu. Rev. Plant Physiol. 49: 249-279, 1998. Go to original source...
  20. Pagnussat, G.C., Lanteri, M.L., Lombardo, M.C., Lamattina, L.: Nitric oxide mediates the indole acetic acid induction activation of a mitogen-activated protein kinase cascade involved in adventitious root development. - Plant Physiol. 135: 279-286, 2004. Go to original source...
  21. Ruan, H.H., Shen, W.B., Liu, K.L., Xu, L.L.: Effects of exogenous NO donor on glutathione-dependent antioxidative system in wheat seedling leaf under salt stress. - Acta agron. sin. 31: 1144-1149, 2005.
  22. Rüegsegger, A., Brunold, C.: Effect of cadmium on γ-glutamylcysteine synthesis in maize seedlings. - Plant Physiol. 99: 428-433, 1992. Go to original source...
  23. Shan, C., Liang, Z.: Jasmonic acid regulates ascorbate and glutathione metabolism in Agropyron cristatum leaves under water stress. - Plant Sci. 178: 130-139, 2010. Go to original source...
  24. Song, L.L., Ding, W., Shen, J., Zhang, Z.G., Bi, Y.R., Zhang, L.X.: Nitric oxide mediates abscisic acid induced thermotolerance in the calluses from two ecotypes of reed under heat stress. - Plant Sci. 175: 826-832, 2008. Go to original source...
  25. Vuletić, M., Šukalović, V.H., Marković, K., Maksimović, J.D.: Antioxidative system in maize roots as affected by osmotic stress and different nitrogen sources. - Biol. Plant. 54: 530-534, 2010. Go to original source...
  26. Wang, Y., Lin, J.S., Wang, G.X.: Role of calcium in nitric oxide-induced programmed cell death in tobacco protoplasts. - Biol. Plant. 54: 471-476, 2010. Go to original source...
  27. Wheeler, G.L., Jones, M.A., Smirnoff, N.: The biosynthetic pathway of vitamin C in higher plants. - Nature 393: 365-369, 1998. Go to original source...
  28. Wu, J.C., Chen, J.Q., Liang, J., Yang, W.B., Wu, J.J., Chen, L.Q., Liu, M.Q., Chen, L.Q.: Effects of exogenous NO on ascorbate-glutathione cycle in loquat leaves under low temperature stress. - Chin. J. appl. Ecol. 20: 1395-1400, 2009.
  29. Zeier, J., Delledonne, M., Mishina, T., Severi, E., Sonoda, M., Lamb, C.: Genetic elucidation of nitric oxide signaling in incompatible plant-pathogen interactions. - Plant Physiol. 136: 2875-2886, 2004. Go to original source...
  30. Zhang, A., Jiang, M., Zhang, J., Ding, H., Xu, S., Hu, X., Tan, M.: Nitric oxide induced by hydrogen peroxide mediates abscisic acid-induced activation of the mitogen-activated protein kinase cascade involved in antioxidant defense in maize leaves. - New Phytol. 175: 36-50, 2007. Go to original source...
  31. Zhao, L.Q., Zhang, F., Guo, J.K., Yang, Y.L., Li, B.B., Zhang, L.X.: Nitric oxide functions as a signal in salt resistance in the calluses from two ecotypes of reed. - Plant Physiol. 134: 849-857, 2004. Go to original source...
  32. Zottini, M., Formentin, E., Scattolin, M., Carimi, F., Lo Schiavo, F., Terzi, M.: Nitric oxide affects plant mitochondrial functionality in vivo. - FEBS Lett. 515: 75-78, 2002. Go to original source...